• Title/Summary/Keyword: CMN(Cepstral Mean Normalization)

Search Result 7, Processing Time 0.02 seconds

Cepstral Feature Normalization Methods Using Pole Filtering and Scale Normalization for Robust Speech Recognition (강인한 음성인식을 위한 극점 필터링 및 스케일 정규화를 이용한 켑스트럼 특징 정규화 방식)

  • Choi, Bo Kyeong;Ban, Sung Min;Kim, Hyung Soon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.34 no.4
    • /
    • pp.316-320
    • /
    • 2015
  • In this paper, the pole filtering concept is applied to the Mel-frequency cepstral coefficient (MFCC) feature vectors in the conventional cepstral mean normalization (CMN) and cepstral mean and variance normalization (CMVN) frameworks. Additionally, performance of the cepstral mean and scale normalization (CMSN), which uses scale normalization instead of variance normalization, is evaluated in speech recognition experiments in noisy environments. Because CMN and CMVN are usually performed on a per-utterance basis, in case of short utterance, they have a problem that reliable estimation of the mean and variance is not guaranteed. However, by applying the pole filtering and scale normalization techniques to the feature normalization process, this problem can be relieved. Experimental results using Aurora 2 database (DB) show that feature normalization method combining the pole-filtering and scale normalization yields the best improvements.

A Study on Environment Parameter Compensation Method for Robust Speech Recognition (잡음에 강인한 음성 인식을 위한 환경 파라미터 보상에 관한 연구)

  • Hong, Mi-Jung;Lee, Ho-Woong
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.5 no.2 s.10
    • /
    • pp.1-10
    • /
    • 2006
  • In this paper, VTS(Vector Taylor Series) algorithm, which was proposed by Moreno at Carnegie Mellon University in 1996, is analyzed and simulated. VTS is considered to be one of the robust speech recognition techniques where model parameter conversion technique is adapted. To evaluation performance of the VTS algorithm, We used CMN(Cepstral Mean Normalization) technique which is one of the well-known noise processing methods. And the recognition rate is evaluated when white gaussian and street noise are employed as background noise. Also, the simulation result is analyzed in order to be compared with the previous one which was performed by Moreno.

  • PDF

Performance Improvement of Connected Digit Recognition with Channel Compensation Method for Telephone speech (채널보상기법을 사용한 전화 음성 연속숫자음의 인식 성능향상)

  • Kim Min Sung;Jung Sung Yun;Son Jong Mok;Bae Keun Sung
    • MALSORI
    • /
    • no.44
    • /
    • pp.73-82
    • /
    • 2002
  • Channel distortion degrades the performance of speech recognizer in telephone environment. It mainly results from the bandwidth limitation and variation of transmission channel. Variation of channel characteristics is usually represented as baseline shift in the cepstrum domain. Thus undesirable effect of the channel variation can be removed by subtracting the mean from the cepstrum. In this paper, to improve the recognition performance of Korea connected digit telephone speech, channel compensation methods such as CMN (Cepstral Mean Normalization), RTCN (Real Time Cepatral Normalization), MCMN (Modified CMN) and MRTCN (Modified RTCN) are applied to the static MFCC. Both MCMN and MRTCN are obtained from the CMN and RTCN, respectively, using variance normalization in the cepstrum domain. Using HTK v3.1 system, recognition experiments are performed for Korean connected digit telephone speech database released by SITEC (Speech Information Technology & Industry Promotion Center). Experiments have shown that MRTCN gives the best result with recognition rate of 90.11% for connected digit. This corresponds to the performance improvement over MFCC alone by 1.72%, i.e, error reduction rate of 14.82%.

  • PDF

Histogram Equalization Using Centroids of Fuzzy C-Means of Background Speakers' Utterances for Majority Voting Based Speaker Identification (다수 투표 기반의 화자 식별을 위한 배경 화자 데이터의 퍼지 C-Means 중심을 이용한 히스토그램 등화기법)

  • Kim, Myung-Jae;Yang, Il-Ho;Yu, Ha-Jin
    • The Journal of the Acoustical Society of Korea
    • /
    • v.33 no.1
    • /
    • pp.68-74
    • /
    • 2014
  • In a previous work, we proposed a novel approach of histogram equalization using a supplement set which is composed of centroids of Fuzzy C-Means of the background utterances. The performance of the proposed method is affected by the size of the supplement set, but it is difficult to find the best size at the point of recognition. In this paper, we propose a histogram equalization using a supplement set for majority voting based speaker identification. The proposed method identifies test utterances using a majority voting on the histogram equalization methods with various sizes of supplement sets. The proposed method is compared with the conventional feature normalization methods such as CMN(Cepstral Mean Normalization), MVN(Mean and Variance Normalization), and HEQ(Histogram Equalization) and the histogram equalization method using a supplement set.

Histogram Equalization Using Background Speakers' Utterances for Speaker Identification (화자 식별에서의 배경화자데이터를 이용한 히스토그램 등화 기법)

  • Kim, Myung-Jae;Yang, Il-Ho;So, Byung-Min;Kim, Min-Seok;Yu, Ha-Jin
    • Phonetics and Speech Sciences
    • /
    • v.4 no.2
    • /
    • pp.79-86
    • /
    • 2012
  • In this paper, we propose a novel approach to improve histogram equalization for speaker identification. Our method collects all speech features of UBM training data to make a reference distribution. The ranks of the feature vectors are calculated in the sorted list of the collection of the UBM training data and the test data. We use the ranks to perform order-based histogram equalization. The proposed method improves the accuracy of the speaker recognition system with short utterances. We use four kinds of speech databases to evaluate the proposed speaker recognition system and compare the system with cepstral mean normalization (CMN), mean and variance normalization (MVN), and histogram equalization (HEQ). Our system reduced the relative error rate by 33.3% from the baseline system.

Realization a Text Independent Speaker Identification System with Frame Level Likelihood Normalization (프레임레벨유사도정규화를 적용한 문맥독립화자식별시스템의 구현)

  • 김민정;석수영;김광수;정현열
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.3 no.1
    • /
    • pp.8-14
    • /
    • 2002
  • In this paper, we realized a real-time text-independent speaker recognition system using gaussian mixture model, and applied frame level likelihood normalization method which shows its effects in verification system. The system has three parts as front-end, training, recognition. In front-end part, cepstral mean normalization and silence removal method were applied to consider speaker's speaking variations. In training, gaussian mixture model was used for speaker's acoustic feature modeling, and maximum likelihood estimation was used for GMM parameter optimization. In recognition, likelihood score was calculated with speaker models and test data at frame level. As test sentences, we used text-independent sentences. ETRI 445 and KLE 452 database were used for training and test, and cepstrum coefficient and regressive coefficient were used as feature parameters. The experiment results show that the frame-level likelihood method's recognition result is higher than conventional method's, independently the number of registered speakers.

  • PDF

Performance Improvement in GMM-based Text-Independent Speaker Verification System (GMM 기반의 문맥독립 화자 검증 시스템의 성능 향상)

  • Hahm Seong-Jun;Shen Guang-Hu;Kim Min-Jung;Kim Joo-Gon;Jung Ho-Youl;Chung Hyun-Yeol
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • autumn
    • /
    • pp.131-134
    • /
    • 2004
  • 본 논문에서는 GMM(Gaussian Mixture Model)을 이용한 문맥독립 화자 검증 시스템을 구현한 후, arctan 함수를 이용한 정규화 방법을 사용하여 화자검증실험을 수행하였다. 특징파라미터로서는 선형예측방법을 이용한 켑스트럼 계수와 회귀계수를 사용하고 화자의 발성 변이를 고려하여 CMN(Cepstral Mean Normalization)을 적용하였다. 화자모델 생성을 위한 학습단에서는 화자발성의 음향학적 특징을 잘 표현할 수 있는 GMM(Gaussian Mixture Model)을 이용하였고 화자 검증단에서는 ML(Maximum Likelihood)을 이용하여 유사도를 계산하고 기존의 정규화 방법과 arctan 함수를 이용한 방법에 의해 정규화된 점수(score)와 미리 정해진 문턱값과 비교하여 검증하였다. 화자 검증 실험결과, arctan 함수를 부가한 방법이 기존의 방법보다 항상 향상된 EER을 나타냄을 확인할 수 있었다.

  • PDF