• Title/Summary/Keyword: CMIP5 GCM

Search Result 46, Processing Time 0.035 seconds

Assessment of CMIP5 GCMs for future extreme drought analysis (미래 극한 가뭄 전망을 위한 CMIP5 GCMs 평가)

  • Hong, Hyun-Pyo;Park, Seo-Yeon;Kim, Tae-Woong;Lee, Joo-Heon
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.7
    • /
    • pp.617-627
    • /
    • 2018
  • In this study, CMIP5 GCMs rainfall data (2011~2099) based on RCP scenarios were used to analyze the extreme drought evaluation for the future period. For prospective drought assessment, historical observations were used based on the Automated Surface Observing System (ASOS) data (1976~2010) of the Korea Meteorological Administration. Through the analysis of various indicators, such as average annual rainfall, rainy days, drought spell, and average drought severity was carried out for the drought evaluation of the five major river basins (Han river, Nakdong river, Geum river, Sumjin river, and Youngsan river) over the Korean peninsula. The GCMs that predicted the most severe future droughts are CMCC-CMS, IPSL-CM5A-LR and IPSL-CM5A-MR. Moderate future droughts were predicted from HadGEM2-CC, CMCC-CM and HadGEM2-ES. GCMs with relatively weak future drought forecasts were selected as CESM1-CAM5, MIROC-ESM-CHEM and CanESM2. The results of this study might be used as a fundamental data to choose a reasonable climate change scenario in future extreme drought evaluation.

Assessing the Impact of Bias Correction on Runoff simulation according to CMIP6 GCMs climate (CMIP6 GCMs 기후에 따른 유출 모의에 대한 편의보정 방법의 영향 평가)

  • Seung Taek Chae;Jin Hyuck Kim;Eun-Sung Chung
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.91-91
    • /
    • 2023
  • General circulation models(GCMs)은 여러 국가 기관들의 물리적 기후 모의 프로세스를 기반으로 과거 및 미래 기후변화의 영향을 정량화하기 위해 개발되었으며 현재 미래 기후변화를 예측하는데 가장 효과적인 도구이다. 그러나 GCMs에 내포된 여러 불확실성 요소 및 넓은 격자형식의 기후 데이터는 GCMs 기후 데이터를 사용한 지역적 기후 모의 시 주요 걸림돌로 인식되어지고 있다. 편의보정 방법은 GCMs을 사용한 지역적 기후 모의 시 기후 모의 성능을 향상시키기 위해 여러 연구에서 사용되어져 왔으나 다른 연구에서는 이러한 편의보정 방법의 문제점을 언급했다. 따라서 본 연구는 편의보정 방법이 GCMs 기후 모의 결과에 미치는 영향을 정량화하고 더 나아가 GCMs 기후 변수에 따른 유량 모의 결과에 미치는 영향을 분석했다. 연구대상지 과거 기간 기후 모의를 위해 coupled model intercomparison project(CMIP)6의 GCMs을 사용했으며, 미래 기후 모의를 위해 shared socioeconomic pathway(SSP) 시나리오를 사용했다. 편의보정 방법으로는 분위사상법을 사용했으며, 편의보정 전후 GCMs 기후 모의 성능평가를 위해 5개 평가 지표를 사용했다. 연구대상지 장기 유출 모의를 위해 storm water management model(SWMM)이 사용되었으며, 기후 입력 자료로는 일 단위 강수량, 최고 및 최저온도를 고려했다. 미래 기후 및 유량 모의 결과의 불확실성은 square root of error variance(SREV) 방법을 통해 정량화됐다. 결과적으로 과거 기간 GCMs 기후 및 유량 모의성능은 편의보정 전보다 편의보정 후에서 향상되었으며 특히, 강수 및 유량 모의 성능이 크게 향상되었다. 미래 기간의 경우 편의보정 후에서 기후 및 유량의 극값을 더 잘 반영함을 확인했다. 본 연구의 결과는 GCMs 기후 변수를 사용한 지역적 기후 및 유량 모의 시 편의보정 방법이 미치는 영향에 대한 구체적인 정보를 제공할 수 있다.

  • PDF

Assessing the Climate Change Impacts on Future Upland Drought using the Soil Moisture Model and CMIP5 GCMs (CMIP5 GCMs와 토양수분모형을 이용한 기후변화에 따른 미래 밭가뭄 평가)

  • Jeon, Min-Gi;Nam, Won-Ho;Hong, Eun-Mi;Hwang, Seon-Ah
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.66-66
    • /
    • 2020
  • 최근 기후변화로 인한 전 세계적인 기온상승이 야기되고 있으며, 농업에 직접적인 영향을 주는 기상학적 및 수문학적 변화가 급격하게 진행되고 있다. 우리나라의 경우 최근 7년 동안 지역별로 극심한 가뭄이 매년 발생하고 있고, 가뭄의 발생 빈도와 강도가 증가하는 추세이다. 특히 밭의 경우 농업용 저수지 등 수리시설물로부터 관개용수를 공급받는 논 작물과 달리 자연 강우를 통해 필요한 용수량을 공급받는 천수답이 대부분이고 관개시설이 부족하기 때문에, 기후변화에 의한 가뭄의 취약성이 높다. 밭작물은 작물의 생육 시기와 기후 환경, 수자원 환경에 민감하고 토양수분을 흡수함으로써 생육하기 때문에 이러한 밭작물의 소비수량 및 관개용수량은 증발산량 뿐만 아니라 토양내 수분의 이동을 고려하여 수분 부족량을 산정해야 한다. 본 연구에서는 미래 기후변화에 의한 밭가뭄 평가를 위하여 밭 작물별 소비수량 및 관개용수량을 추정하기 위한 밭 토양수분 물수지 모형 (Soil Moisture Model)을 구성하였다. 또한 대표농도경로 (Representative Concentration Pathway, RCP) 시나리오 기반의 제5차 결합기후모델상호비교사업 (Coupled Model Intercomparison Project Phase 5, CMIP5)에서 제공하는 RCP 시나리오를 기반으로 한 전지구 기후모델 (General Circulation Model, GCM)의 기후예측결과를 적용함으로써 미래 밭 가뭄 평가를 수행하였다. 과거 기상자료 및 미래 대표농도경로 시나리오와 작물 기초자료를 수집하여 과거 및 미래 작물증발산량을 산정하였으며, 토양수분 물수지 모형에 적용하여 밭작물의 토양수분 변화를 모의하고 기후변화에 따른 작물별/생육시기별 소비수량 및 관개용수량을 추정하였다.

  • PDF

Future drought projection in Cheongmicheon watershed under SSP (SSP 시나리오에 따른 청미천 유역의 미래 가뭄 예측)

  • Kim, Jin Hyuck;Chae, Seung Taek;Chung, Eun-Sung
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.330-330
    • /
    • 2021
  • 본 연구에서는 새롭게 개발 중인 SSP 시나리오의 일단위 강수량과 온도 자료를 활용하여 청미천 유역의 미래 가뭄의 예측 및 분석을 실시하였다. SSP1-2.6, SSP2-4.5, SSP3-7.0, SSP5-8.5에 따른 새롭게 개발 중인 CMIP6 (Coupled Model Intercomparison Project) GCM (General Circulation Models) 중 ACCESS-ESM1.5(Australian Community Climate and Earth System Simulator model)를 이용하였다. GCM 자료는 Quantile Mapping 방법을 사용하여 편이보정 되었고, 유출분석은 SWAT(Soil and Water Assessment Tool) 모형을 사용하여 청미천 유역에 대해 수행하였다. 청미천 유역의 가뭄분석을 위해 기상학적 가뭄지수인 SPI(Standardized Precipitation Index)와 SPEI(Standardized Precipitation Evapotranspiration Index), 수문학적 가뭄지수인 SDI(Standardized Streamflow Index)를 산정하였다. 그 후, 시간에 따른 가뭄의 특성을 분석하기 위해 가까운 미래 (2025-2064)와 먼 미래 (2065-2100) 로 구분하여 분석을 진행하였다. 그 결과, 청미천 유역의 가뭄 발생은 SSP시나리오, 가뭄지수에 따라 차이점을 확인할 수 있었다. SSP 시나리오의 경우 SSP5-8.5에서 가장 심각한 가뭄이 발생하였다. 가뭄지수의 경우 강수만을 고려한 SPI는 먼 미래에 비해 가까운 미래에서 더욱 심각한 가뭄이 발생하였다. SDI의 경우 강수량의 변동이 일반적으로 하천의 흐름에 영향을 미치기에 SPI와 비슷한 양상을 나타내었다. SPEI의 경우 시간에 따른 기온상승으로 먼 미래에 심각한 가뭄이 발생하였다.

  • PDF

Prioritization of locations for permeable pavement considering future climate scenarios (미래 기후시나리오에 따른 투수성포장 시설 우선순위 선정)

  • Chae, Seung Taek;Choi, Hyuk Su;Chung, Eun-Sung
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.364-364
    • /
    • 2021
  • 최근 지구온난화에 따른 홍수 및 가뭄 재해의 피해는 심각해졌다. 그러므로 미래 재해로 인한 피해를 완화시키기 위한 수자원 계획 수립 및 관리의 중요성이 높아지고 있다. 전지구모형(General Circulation Model, GCM)은 기후 변화 연구에서 기후 요인의 변동을 조사하는데 널리 사용되어지고 있다. 본 연구에서는 기후 변화 시나리오를 고려하여 도시유역의 소유역 별 투수성포장 시설의 우선순위를 산정했다. 기후 변화 시나리오에는Representative Concentration Pathway(RCP)와 Shared Socioeconomic Pathway(SSP) 시나리오가 사용되었으며 CMIP5와 CMIP6의 GCM을 고려하였다. GCM을 이용하여 산정된 미래 월 강수량은 분위사상(Quantile Mapping)법의 비모수변환(Non-Parametirc Transformation)법 중 하나인 스플라인 평활(Smoothing Spline) 방법을 사용하여 편이보정 되었다. 연구대상지는 목감천 유역이 선정되었으며, 27개의 소유역에 대해 투수성포장 시설의 우선순위를 산정되었다. 우선순위 산정을 위한 평가 기준들은 Driving force-Pressure-State-Impact-Response(DPSIR) 모형을 기반으로 산정 되었다. 평가기준에 따른 27개의 소유역에 대한 값들은 통계청 및 국가수자원관리종합정보시스템(WAMIS), 편이보정 된 미래 강수량과 Storm Water Management Model(SWMM)을 이용한 유출분석 결과를 통해 도출했다. 평가기준들의 객관적 가중치 산정을 위해 엔트로피 방법을 이용했다. 최종적으로 목감천 소유역 별 투수성포장 시설의 우선순위 산정에는 다기준의사결정기법 중 하나인 TOPSIS방법을 사용했다. 산정 결과 DPSIR 모형을 기반으로 수문학적 요소에 큰 가중치를 부여한 경우 하류보다는 상류 유역에서 높은 우선순위를 확인했으며, 각 요소별 동일한 가중치를 주었을 때 하류 유역에 높은 우선순위가 집중되었다.

  • PDF

Assessing the Climate Change Impacts on Agricultural Reservoirs using the SWAT model and CMIP5 GCMs (SWAT모형과 CMIP5 자료를 이용한 기후변화에 따른 농업용 저수지 기후변화 영향 평가)

  • Cho, Jaepil;Hwang, Syewoon;Go, Gwangdon;Kim, Kwang-Young;Kim, Jeongdae
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.57 no.5
    • /
    • pp.1-12
    • /
    • 2015
  • The study aimed to project inflows and demmands for the agricultural reservoir watersheds in South Korea considering a variety of regional characteristics and the uncertainty of future climate information. The study bias-corrected and spatially downscaled retrospective daily Global Climate Model (GCM) outputs under Representative Concentration Pathways (RCP) 4.5 and 8.5 emission scenarios using non-parametric quantile mapping method to force Soil and Water Assessment Tool (SWAT) model. Using the historical simulation, the skills of un-calibrated SWAT model (without calibration process) was evaluated for 5 reservoir watersheds (selected as well-monitored representatives). The study then, evaluated the performance of 9 GCMs in reproducing historical upstream inflow and irrigation demand at the five representative reservoirs. Finally future inflows and demands for 58 watersheds were projected using 9 GCMs projections under the two RCP scenarios. We demonstrated that (1) un-calibrated SWAT model is likely applicable to agricultural watershed, (2) the uncertainty of future climate information from different GCMs is significant, (3) multi-model ensemble (MME) shows comparatively resonable skills in reproducing water balances over the study area. The results of projection under the RCP 4.5 and RCP 8.5 scenario generally showed the increase of inflow by 9.4% and 10.8% and demand by 1.4% and 1.7%, respectively. More importantly, the results for different seasons and reservoirs varied considerably in the impacts of climate change.

Projection and Analysis of Future Temperature and Precipitation in East Asia Region Using RCP Climate Change Scenario (RCP 기반 동아시아 지역의 미래 기온 및 강수량 변화 분석)

  • Lee, Moon-Hwan;Bae, Deg-Hyo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.578-578
    • /
    • 2015
  • 동아시아 지역의 대부분은 몬순의 영향으로 인해 수자원의 계절적 변동성이 크며 이로 인해 홍수 및 가뭄이 빈번하게 발생하고 있다. 기후변화에 따른 기온과 강수량의 변화는 수자원의 변동성을 더욱 악화시킬 수 있으며, 수재해 피해를 더욱 가중시킬 것으로 전망되고 있다. 본 연구에서는 기후변화에 따른 동아시아 지역의 기온 및 강수량의 변화를 전망하고, 그 특성을 분석하고자 한다. 이를 위해 CMIP5의 핵심실험인 2개 RCP시나리오(RCP4.5, RCP8.5)에 대한 다수의 GCMs 결과를 이용하였다. 구축한 기후시나리오를 이중선형보간법(bilinear interpolation)을 이용하여 공간적으로 상세화하였으며, Delta method를 이용하여 편의보정을 수행하였다. GCM 모의자료의 편의를 산정하기 위해 관측자료는 APHRODITE의 기온 및 강수량 자료를 이용하였다. GCM에 따라 차이가 나지만, 우리나라의 경우 평균적으로 100~300mm 정도 과소모의 되는 것으로 나타났다. 미래 기온 및 강수량 전망을 위해 과거기간은 1976~2005년, 미래기간은 2021~2050년(2040s), 2061~2090년(2070s)으로 구분하였다. 우리나라의 경우 RCP 4.5 하에서 연평균기온은 $1.4{\sim}1.7^{\circ}C$(2040s), $2.2{\sim}3.4^{\circ}C$(2070s) 정도 상승할 것으로 나타났으며, 연평균 강수량은 4.6~5.3% (2040s), 8.4~10.5% (2070s) 정도 증가할 것으로 나타났다. RCP 8.5에서는 연평균 기온은 RCP4.5에 비해 상승폭이 더 컸으며, 강수량은 유사한 결과가 나타났다. 또한, 동아시아 지역에서도 연평균 기온이 상승하고 연평균 강수량은 증가하는 것으로 나타났다. 다만, 지역별로 계절별 기온 및 강수량이 매우 다른 양상으로 나타났다. 이는 동아시아 지역과 같이 계절별 강수량 발생패턴이 다른 지역에서는 홍수 및 가뭄에 매우 중요한 역할을 할 것이다. 따라서 지역적으로 계절별 강수량의 변화를 분석해야 할 것으로 판단되며, 추후 유출량 모의를 기반으로 홍수 및 가뭄의 영향을 직접적으로 분석해야할 것으로 판단된다.

  • PDF

Evaluation of Agro-Climatic Index Using Multi-Model Ensemble Downscaled Climate Prediction of CMIP5 (상세화된 CMIP5 기후변화전망의 다중모델앙상블 접근에 의한 농업기후지수 평가)

  • Chung, Uran;Cho, Jaepil;Lee, Eun-Jeong
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.17 no.2
    • /
    • pp.108-125
    • /
    • 2015
  • The agro-climatic index is one of the ways to assess the climate resources of particular agricultural areas on the prospect of agricultural production; it can be a key indicator of agricultural productivity by providing the basic information required for the implementation of different and various farming techniques and practicalities to estimate the growth and yield of crops from the climate resources such as air temperature, solar radiation, and precipitation. However, the agro-climate index can always be changed since the index is not the absolute. Recently, many studies which consider uncertainty of future climate change have been actively conducted using multi-model ensemble (MME) approach by developing and improving dynamic and statistical downscaling of Global Climate Model (GCM) output. In this study, the agro-climatic index of Korean Peninsula, such as growing degree day based on $5^{\circ}C$, plant period based on $5^{\circ}C$, crop period based on $10^{\circ}C$, and frost free day were calculated for assessment of the spatio-temporal variations and uncertainties of the indices according to climate change; the downscaled historical (1976-2005) and near future (2011-2040) RCP climate sceneries of AR5 were applied to the calculation of the index. The result showed four agro-climatic indices calculated by nine individual GCMs as well as MME agreed with agro-climatic indices which were calculated by the observed data. It was confirmed that MME, as well as each individual GCM emulated well on past climate in the four major Rivers of South Korea (Han, Nakdong, Geum, and Seumjin and Yeoungsan). However, spatial downscaling still needs further improvement since the agro-climatic indices of some individual GCMs showed different variations with the observed indices at the change of spatial distribution of the four Rivers. The four agro-climatic indices of the Korean Peninsula were expected to increase in nine individual GCMs and MME in future climate scenarios. The differences and uncertainties of the agro-climatic indices have not been reduced on the unlimited coupling of multi-model ensembles. Further research is still required although the differences started to improve when combining of three or four individual GCMs in the study. The agro-climatic indices which were derived and evaluated in the study will be the baseline for the assessment of agro-climatic abnormal indices and agro-productivity indices of the next research work.

Projected Future Extreme Droughts Based on CMIP6 GCMs under SSP Scenarios (SSP 시나리오에 따른 CMIP6 GCM 기반 미래 극한 가뭄 전망)

  • Kim, Song-Hyun;Nam, Won-Ho;Jeon, Min-Gi;Hong, Eun-Mi;Oh, Chansung
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.66 no.4
    • /
    • pp.1-15
    • /
    • 2024
  • In recent years, climate change has been responsible for unusual weather patterns on a global scale. Droughts, natural disasters triggered by insufficient rainfall, can inflict significant social and economic consequences on the entire agricultural sector due to their widespread occurrence and the challenge in accurately predicting their onset. The frequency of drought occurrences in South Korea has been rapidly increasing since 2000, with notably severe droughts hitting regions such as Incheon, Gyeonggi, Gangwon, Chungbuk, and Gyeongbuk in 2015, resulting in significant agricultural and social damage. To prepare for future drought occurrences resulting from climate change, it is essential to develop long-term drought predictions and implement corresponding measures for areas prone to drought. The Intergovernmental Panel on Climate Change (IPCC) Sixth Assessment Report outlines a climate change scenario under the Shared Socioeconomic Pathways (SSPs), which integrates projected future socio-economic changes and climate change mitigation efforts derived from the Coupled Model Intercomparison Project 6 (CMIP6). SSPs encompass a range of factors including demographics, economic development, ecosystems, institutions, technological advancements, and policy frameworks. In this study, various drought indices were calculated using SSP scenarios derived from 18 CMIP6 global climate models. The SSP5-8.5 scenario was employed as the climate change scenario, and meteorological drought indices such as the Standardized Precipitation Index (SPI), Self-Calibrating Effective Drought Index (scEDI), and Standardized Precipitation Evapotranspiration Index (SPEI) were utilized to analyze the prediction and variability of future drought occurrences in South Korea.