• Title/Summary/Keyword: CMCase activity

Search Result 140, Processing Time 0.029 seconds

Plant Cell-Wall Degradation and Glycanase Activity of the Rumen Anaerobic Fungus Neocallimastix frontalis MCH3 Grown on Various Forages

  • Fujino, Y.;Ushida, K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.12 no.5
    • /
    • pp.752-757
    • /
    • 1999
  • Studies were made of digestion of timothy (Pheleum pretense) hay, tall fescue (Festuca elatior) hay, and rice (Oryza sativa) straw in pure cultures of rumen anaerobic fungus, Neocallimastix frontails MCH3. The fungus was inoculated on ground forages (1%, w/v) in an anaerobic medium and incubated at $39^{\circ}C$. Incubation was continued for 24, 48, 72 and 96 h. The losses of dry matter, xylose and glucose of forage during incubation were determined at the end of these incubation periods. Xylose and glucose were considered to be released from xylan and cellulose, respectively. The digested xylan to digested cellulose (X/C) ratios of the substrate were calculated. Xylanase and carboxymethyl cellulose (CMCase) of culture supernatant and residual substrate was measured at the same time. The X/C ratios in the cultures on timothy hay and rice straw were greater than 0.5 in the first 24-h incubation period. The values were smaller than 0.3 in tall fesque. The ratio of xylanase activity to that of CMCase in the first 24-h incubation period correlated well with the traits in X/C ratio. However xylanase activity was still superior to CMCase in the following incubation period (48 to 96 h), although the glucose (designated as cellulose) was more intensively digested than xylose (designated as xylan). The production of these polysaccharidases appeared to correlate with substrate cell-wall sugar composition, xylose to glucose ratios, at the beginning of fast growing period.

Characterization of Carboxymethylcellulase(CMCase) Produced by Recombinant E. coli Containing CMCase Gene for Cellulomonas sp. YE-5

  • Park, Sung-Won;Her, Nam-Yun;Kim, Dong-Seob;Park, Sun-Jin;Lee, Han-Seung;Park, Hak-Jong;Yu, Ju-Hyun
    • Preventive Nutrition and Food Science
    • /
    • v.2 no.2
    • /
    • pp.174-179
    • /
    • 1997
  • CMCase produced by recombinant E. coli JM109 (pCEH#4) containing CMCase gene from Cellulomonas sp. YE-5 was purified to 24.3 fold and 2.6% yield by ammoniumsulfate precipitation, DEAE-cellulose column chromatography and gel filtration on Sephadex G-100. The optimum pH and temperature for CMCase activity were pH 7.0 and 5$0^{\circ}C$. The enzyme was stable between pH 5.0 and 10.0, and up to 6$0^{\circ}C$. The molecular weight of he enzyme was estimated to be approximately 40,000 daltons by SDS-PAGE. Analysis of the amino acid composition showed that the enzyme contained many glycines and acidic amino acids. The enzyme was an endo-type CMCase and the final enzyme reaction product from hydrolysis of Cm-cellulose by the enzyme was cellobiose. {TEX}$K_{M}${/TEX} value determined with CM-cellulose was 1.28mM.

  • PDF

Production of Thermostable $\alpha$-Amylase and Cellulase from Cellulomonas sp.

  • EMTIAZI, G.,;I. NAHVI,
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.6
    • /
    • pp.1196-1199
    • /
    • 2004
  • A bacterium, isolated from rabbit's waste and identified as Cellulomonas sp., had cellulase and thermostable $\alpha$-amylase activity when grown on wheat bran. Maximum activity of thermostable $\alpha$-amylase was obtained by adding $3\%$ soluble starch. However, soybean oil (1 ml $1^{-1}$) could increase the production of $\alpha$-amylase and cellulase in 'wheat bran. The $\alpha$-amylase was characterized by making a . demonstration of optimum activity at $90^{\circ}C$ and pH 6- 9, with soluble starch as a substrate. The effect of ions on the activity and the stability of this enzyme were investigated. This strain secreted carboxymethyl cellulase (CMCase), cellobiase ($\beta$­glucosidase), and filter paperase (Fpase) during growth on wheat bran. Carboxymethy1cellulase, cellobiase, and Fpase activities had pH optima of 6, 5.5, and 6, respectively. CMCase and cellobiase activities both had an optimum temperature of $50^{\circ}C$, whereas Fpase had an optimum temperature of $45^{\circ}C$.

Physical and catalytic properties of CMCase encoded by Bacillus subtilis gene in B. megaterium

  • Kim, Hoon;Kim, Ha-Geun;Park, Moo-Young
    • Proceedings of the Korean Society for Applied Microbiology Conference
    • /
    • 1986.12a
    • /
    • pp.524.3-524
    • /
    • 1986
  • Carboxymethyl cellulase (CMCase) produced by cloned B. megaterium was found to contain 5.2% carbohydrate but no metal ion. The enzyme was isoelectric at pH 7.23 and was high is basic amino acids. The N-terminal of the enzyme was glutamic acid. The cellulolytic activity of this enzyme was extended to the small molecular substrates such as from cellotriose to cellopentaose. In additon, the enzyme showed transglycoslation activity. The pK values of the enzyme we estimated to be 4.4 and 6.7, andthat of the enzyme-substrate complex were 4.2 and 7.2, respectively. The enzyme was not affected by the treatment with iodoacetic acid, but the modification of enzyme with carbodiimide and diethyl pyrocarbonate resulted in a marked loss of the enzyme activity. These results suggest that the active site of enzyme essentially contains carboxylic and imidazole group of amino acid residues.

  • PDF

The Extracellular Enzyme Activities in Culture Broth of Sparassis crispa. (꽃송이버섯(Sparassis crispa)의 세포외 효소활성)

  • Kim Ji-Young;Lim Chang-Soo;Kim Jae-Yong;Han Yeong-Hwan
    • Korean Journal of Microbiology
    • /
    • v.40 no.3
    • /
    • pp.230-231
    • /
    • 2004
  • The mycelia of Sparassis crispa DSMZ 5201 were cultivated at $24^{\circ}C$ for 15 days in yeast-malt extract-glucose broth (pH 4.0) and the filtrate was used as crude enzyme solution to determined the extracellular enzyme activity. The specific activity of $\alpha$-amylase was 44.27 unit/protein. The specific activities of protease, CMCase, $\beta$-glucosidase, chitinase, exo-$\beta$-l,4-glucanase were relatively high. However, a very little activity of xylanase was found.

Characterization of Bacteria Isolated from Rotted Onions (Allium cepa) (양파 부패병변에서 분리한 세균의 특성)

  • Lee Chan-Jung;Lim Si-Kyu;Kim Byung-Chun;Park Wan
    • Microbiology and Biotechnology Letters
    • /
    • v.33 no.4
    • /
    • pp.248-254
    • /
    • 2005
  • One hundred thirty nine bacteria were isolated from rotten onions collected from main producing districts, Chang-Nyung, Eui-Ryung, and Ham-Yang in Korea. The $18\%$ (25 strains) of bacterial isolates have carboxymethylcellulase (CMCase) activity and the $53\%$ (74 strains) have polygalacturonase (PGase) activity. Thirty one among randomly selected 45 strains of PGase producing bacteria have pathogenicity to onions. The isolates were classified into Pseudomonas sp. (18 strains), Bacillus sp. (11 strains), Yers-inia sp. (7 strains), and others (9 strains) on the basis of FAMEs patterns. Eighteen strains of Pseudomonas sp. were mainly divided into three cluster in the dendrogram and only the two clusters of them showed pathogenicity to onions. CMCase and PGase activities of Pseudomonas sp. weaker than those of Bacillus sp.. However, the pathogenicity of pseudomonas sp. to soften onions was stronger than that of Bacillus sp. Inoculation of $10^{2}$ cfu of Pseudomonas sp. gives rise to softening of onions. Pseudomonas sp. was identified as Pseudomonas gladioli by biochemical and physiological characteristics. P. gladioli is the first reported bacterium as a pathogen of onion in Korea. In low temperature, P. gladioli showed better growth and higher PGase activity than those of Bacillus sp. identified as Bacillus subtilis. And pH 9.0 is optimal pH for PGase activity of B. subtilis while that of P. gladioli is pH $5.0\∼6.0$ which is the acidity of onions. Taken together, P. gladioli may be a main pathogene of onion rot during the cold storage condition.

Molecular Cloning and Characterization of CM Case gene (celC) from Salmonella typhimurium UR

  • Yoo, Ju-Soon;Jung, Youn-Ju;Chung, Soo-Yeol;Lee, Young-Choon;Choi, Yong-Lark
    • Journal of Microbiology
    • /
    • v.42 no.3
    • /
    • pp.205-210
    • /
    • 2004
  • The sequence coding for carboxymethylcellulase (CMCase, CelC) was isolated from the DNA of Salmonella typhimurium URl. Comparison between the deduced amino acid sequence of CelC (368 amino acid residues, Molecular mass 41 kDa) and that of the previously published CMCase revealed that this enzyme belongs to the cellulase family 8 and D. The protein was overproduced in Escherichia coli using T7 expression system, and its activity was confirmed by CMC-SDS-PAGE. When the overexpressed CelC protein was tested on cellulose-type substrates, the recombinant protein is able to degrade cellulose-type substrates, such as CM-cellulose, xylan, avicel, lichenan, and laminarin. Optimal temperature and pH for enzyme activity were found to be 50$^{\circ}C$ and pH 6.5, respectively.

Studies on Cellulolytic Enzymes Produced by Pleurotus spp. in Synthetic Medium( I ) -Effects of Carbon and Nitrogen Sources- (합성배지(合成培地)에서 Pleurots속(屬)이 생산(生産)하는 섬유소(纖維素) 분해효소(分解酵素)에 관한 연구(硏究)(제1보)(第1報) -탄소원(炭素源)과 질소원(窒素源)의 영향(影響)-)

  • Hong, Jai-Sik;Lee, Jong-Bae;Koh, Moo-Seok;Kim, Jeong-Sook;Lee, Keug-Ro;Kim, Myung-Kon
    • The Korean Journal of Mycology
    • /
    • v.13 no.4
    • /
    • pp.213-219
    • /
    • 1985
  • Among the eight strains, Pleurotus sajor-caju JAFM 1017 was selected as most potent producer of cellulolytic enzymes. The avicelase and CMCase activity reached maximum levels after 10 days, and ${\beta}-glucosidase$ activity reached a maximum level after 19 days. Among the various carbon sources, cellulose powder was most effective for the production of avicelase and ${\beta}-glucosidase$, and Na-CMC (sodium carboxymethyl cellulose) was good for the production of CMCase. The optimum concentration of cellulose powder was 1.0% (w/v), and glucose (1.0%) completely depressed the production of enzymes. Nitrates were effective for the production of enzymes, but nitrites did not support growth. The production of cellulolytic enzymes increased as the concentration of urea increased. The appropriate concentration of urea was 0.054% (w/v).

  • PDF

Studies on Cellulase Induction in Myriococcum albomyces (Myriococcum albomyces에 있어서 Cellulase 유도생성에 관한 연구)

  • Chung, Dong-Hyo
    • Korean Journal of Food Science and Technology
    • /
    • v.3 no.1
    • /
    • pp.1-5
    • /
    • 1971
  • 1. Formation of cellulase in Myriococcum albomyces was investigated using shaking culture with addition of CMC or Avicel as an inducer to 5% wheat bran medium. 2. Three different types of cellulase fraction I, fraction II and fraction III in the culture filtrate were purified by elution column chromatography on a DEAE-Sephadex A-25. 3. By the addition of CMC as an inducer, CMCase activity was stronger than that of Avicelase. On the other hand, the addition of Avicel increased Avicelase activity.

  • PDF

RECYCLING OF WASTEPAPER WITH ALKALINE ENZYME FROM COPRINACEAE SP.

  • Eom, Tae-Jin;Lee, Jung-Myoung
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 1999.04b
    • /
    • pp.291-295
    • /
    • 1999
  • Coprinus cinereus 2249 that is a kind of basidiomycetes constitutively produced alkaline carboxymethyl cellulase (CMCase), filter paper cellulase (FPase) and xylanase. Crude enzymes prepared with optimal conditions showed higher FPase activity than CMCase activity. The FPase was most active at pH 9 at 50$^{\circ}C$. When applied on deinking of the old newsprint (ONP), it increases the freeness and brightness due to effect of hydrolysis at 0.1% enzyme concentration. Also, The physical properties of deinked pulp were improved.