• 제목/요약/키워드: CLASSIFICATION MODEL

검색결과 4,215건 처리시간 0.025초

Design and Implementation of the Ensemble-based Classification Model by Using k-means Clustering

  • Song, Sung-Yeol;Khil, A-Ra
    • 한국컴퓨터정보학회논문지
    • /
    • 제20권10호
    • /
    • pp.31-38
    • /
    • 2015
  • In this paper, we propose the ensemble-based classification model which extracts just new data patterns from the streaming-data by using clustering and generates new classification models to be added to the ensemble in order to reduce the number of data labeling while it keeps the accuracy of the existing system. The proposed technique performs clustering of similar patterned data from streaming data. It performs the data labeling to each cluster at the point when a certain amount of data has been gathered. The proposed technique applies the K-NN technique to the classification model unit in order to keep the accuracy of the existing system while it uses a small amount of data. The proposed technique is efficient as using about 3% less data comparing with the existing technique as shown the simulation results for benchmarks, thereby using clustering.

User Interface Application for Cancer Classification using Histopathology Images

  • Naeem, Tayyaba;Qamar, Shamweel;Park, Peom
    • 시스템엔지니어링학술지
    • /
    • 제17권2호
    • /
    • pp.91-97
    • /
    • 2021
  • User interface for cancer classification system is a software application with clinician's friendly tools and functions to diagnose cancer from pathology images. Pathology evolved from manual diagnosis to computer-aided diagnosis with the help of Artificial Intelligence tools and algorithms. In this paper, we explained each block of the project life cycle for the implementation of automated breast cancer classification software using AI and machine learning algorithms to classify normal and invasive breast histology images. The system was designed to help the pathologists in an automatic and efficient diagnosis of breast cancer. To design the classification model, Hematoxylin and Eosin (H&E) stained breast histology images were obtained from the ICIAR Breast Cancer challenge. These images are stain normalized to minimize the error that can occur during model training due to pathological stains. The normalized dataset was fed into the ResNet-34 for the classification of normal and invasive breast cancer images. ResNet-34 gave 94% accuracy, 93% F Score, 95% of model Recall, and 91% precision.

Text Classification on Social Network Platforms Based on Deep Learning Models

  • YA, Chen;Tan, Juan;Hoekyung, Jung
    • Journal of information and communication convergence engineering
    • /
    • 제21권1호
    • /
    • pp.9-16
    • /
    • 2023
  • The natural language on social network platforms has a certain front-to-back dependency in structure, and the direct conversion of Chinese text into a vector makes the dimensionality very high, thereby resulting in the low accuracy of existing text classification methods. To this end, this study establishes a deep learning model that combines a big data ultra-deep convolutional neural network (UDCNN) and long short-term memory network (LSTM). The deep structure of UDCNN is used to extract the features of text vector classification. The LSTM stores historical information to extract the context dependency of long texts, and word embedding is introduced to convert the text into low-dimensional vectors. Experiments are conducted on the social network platforms Sogou corpus and the University HowNet Chinese corpus. The research results show that compared with CNN + rand, LSTM, and other models, the neural network deep learning hybrid model can effectively improve the accuracy of text classification.

변환학습을 이용한 장면 분류 (The Combined Effect and Therapeutic Effects of Color)

  • 신성윤;신광성;남수태
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2021년도 춘계학술대회
    • /
    • pp.338-339
    • /
    • 2021
  • 본 논문에서는 변환 학습을 기반으로 한 다중 클래스 이미지 장면 분류 방법을 제안한다. 이미지 분류를 위해 대형 이미지 데이터 세트 ImageNet에 대해 사전 학습 한 ResNet (ResNet) 모델을 사용하는 방법이다. CNN 모델의 이미지 분류 방법에 비해 분류 정확도 및 효율성을 크게 향상시킬 수 있다.

  • PDF

Image classification and captioning model considering a CAM-based disagreement loss

  • Yoon, Yeo Chan;Park, So Young;Park, Soo Myoung;Lim, Heuiseok
    • ETRI Journal
    • /
    • 제42권1호
    • /
    • pp.67-77
    • /
    • 2020
  • Image captioning has received significant interest in recent years, and notable results have been achieved. Most previous approaches have focused on generating visual descriptions from images, whereas a few approaches have exploited visual descriptions for image classification. This study demonstrates that a good performance can be achieved for both description generation and image classification through an end-to-end joint learning approach with a loss function, which encourages each task to reach a consensus. When given images and visual descriptions, the proposed model learns a multimodal intermediate embedding, which can represent both the textual and visual characteristics of an object. The performance can be improved for both tasks by sharing the multimodal embedding. Through a novel loss function based on class activation mapping, which localizes the discriminative image region of a model, we achieve a higher score when the captioning and classification model reaches a consensus on the key parts of the object. Using the proposed model, we established a substantially improved performance for each task on the UCSD Birds and Oxford Flowers datasets.

A Parallel Deep Convolutional Neural Network for Alzheimer's disease classification on PET/CT brain images

  • Baydargil, Husnu Baris;Park, Jangsik;Kang, Do-Young;Kang, Hyun;Cho, Kook
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제14권9호
    • /
    • pp.3583-3597
    • /
    • 2020
  • In this paper, a parallel deep learning model using a convolutional neural network and a dilated convolutional neural network is proposed to classify Alzheimer's disease with high accuracy in PET/CT images. The developed model consists of two pipelines, a conventional CNN pipeline, and a dilated convolution pipeline. An input image is sent through both pipelines, and at the end of both pipelines, extracted features are concatenated and used for classifying Alzheimer's disease. Complimentary abilities of both networks provide better overall accuracy than single conventional CNNs in the dataset. Moreover, instead of performing binary classification, the proposed model performs three-class classification being Alzheimer's disease, mild cognitive impairment, and normal control. Using the data received from Dong-a University, the model performs classification detecting Alzheimer's disease with an accuracy of up to 95.51%.

데이터마이닝 기법을 이용한 사상체질 판별함수에 관한 연구 (Study on Classification Function into Sasang Constitution Using Data Mining Techniques)

  • 김규곤;김종원;이의주;김종열;최선미
    • 동의생리병리학회지
    • /
    • 제18권6호
    • /
    • pp.1938-1944
    • /
    • 2004
  • In this study, when we make a diagnosis of constitution using QSCC Ⅱ(Questionnaire of Sasang Constitution Classification). data mining techniques are applied to seek the classification function for improving the accuracy. Data used in the analysis are the questionnaires of 1051 patients who had been treated in Dong Eui Oriental Medical Hospital and Kyung Hee Oriental Medical Hospital. The criteria for data cleansing are the response pattern in the opposite questionnaires and the positive proportion of specific questionnaires in each constitution. And the criteria for variable selection are the test of homogeneity in frequency analysis and the coefficients in the linear discriminant function. Discriminant analysis model and decision tree model are applied to seek the classification function into Sasang constitution. The accuracy in learning sample is similar in two models, the higher accuracy in test sample is obtained in discriminant analysis model.

호흡곤란환자의 입-퇴원 분석을 위한 규칙가중치 기반 퍼지 분류모델 (Rule Weight-Based Fuzzy Classification Model for Analyzing Admission-Discharge of Dyspnea Patients)

  • 손창식;신아미;이영동;박형섭;박희준;김윤년
    • 대한의용생체공학회:의공학회지
    • /
    • 제31권1호
    • /
    • pp.40-49
    • /
    • 2010
  • A rule weight -based fuzzy classification model is proposed to analyze the patterns of admission-discharge of patients as a previous research for differential diagnosis of dyspnea. The proposed model is automatically generated from a labeled data set, supervised learning strategy, using three procedure methodology: i) select fuzzy partition regions from spatial distribution of data; ii) generate fuzzy membership functions from the selected partition regions; and iii) extract a set of candidate rules and resolve a conflict problem among the candidate rules. The effectiveness of the proposed fuzzy classification model was demonstrated by comparing the experimental results for the dyspnea patients' data set with 11 features selected from 55 features by clinicians with those obtained using the conventional classification methods, such as standard fuzzy classifier without rule weights, C4.5, QDA, kNN, and SVMs.

데이터베이스 분류 표준화를 위한 기초연구 (A Pilot Study on the Standard Model for the Classification of Database)

  • 고영만
    • 한국비블리아학회지
    • /
    • 제7권1호
    • /
    • pp.193-230
    • /
    • 1994
  • The systematic classification of database is much debated issue currently in telecommunication industry. Nevertheless, the attempt to build the systematic model is nowadays nowhere to be found. The purpose of this study is to gain a general overview relating to this subject and to make out a draft for the development of standard model. Relating th the study for the databases classification, it was classified from the 9 points of view: manufacturer, subject, processed form (level), (re)presented form, language, completion state and updating cycle, retrieval method, communication media, and use.

  • PDF

Confidence Intervals on Variance Components in Two-Way Classification with Interaction Model

  • Kim, Jung I.;Park, Sung H.
    • 품질경영학회지
    • /
    • 제10권1호
    • /
    • pp.7-12
    • /
    • 1982
  • Arvesen (1969) has shown a procedure which produces an approximate confidence interval for a variance component in unbalanced one-way classification model. In this paper, his work is extended to the case when the model of interest is unbalanced two-way classification. Following the procedure described in this paper, approximate confidence intervals are computed by a Monte Carlo simulation.

  • PDF