• Title/Summary/Keyword: CLASSIFICATION ANALYSIS

Search Result 8,050, Processing Time 0.036 seconds

A Kernel Approach to Discriminant Analysis for Binary Classification

  • Shin, Yang-Kyu
    • Journal of the Korean Data and Information Science Society
    • /
    • v.12 no.2
    • /
    • pp.83-93
    • /
    • 2001
  • We investigate a kernel approach to discriminant analysis for binary classification as a machine learning point of view. Our view of the kernel approach follows support vector method which is one of the most promising techniques in the area of machine learning. As usual discriminant analysis, the kernel method can discriminate an object most likely belongs to. Moreover, it has some advantage over discriminant analysis such as data compression and computing time.

  • PDF

A Study on Organizing the Web Using Facet Analysis (패싯 분석을 이용한 웹 자원의 조직)

  • Yoo, Yeong-Jun
    • Journal of the Korean BIBLIA Society for library and Information Science
    • /
    • v.15 no.1
    • /
    • pp.23-41
    • /
    • 2004
  • In indexing and organizing Web resources, there have been two basic methods: automatic indexing by extracting key words and library classification schemes or subject directories of search engines. But, both methods have failed to satisfy the user's information needs, due to the lack of standard criteria and the irrationality of its structural system. In this paper I have examined the limits of library classification scheme's structures and the problems related to the nature of Web resources such as specificity and exhaustivity. I have also attempted to explain the logicality of Web resources organization by facet analysis and its strengths and limitations. In so doing, I have proposed three specific methods in using facet analysis: firstly, indexing system by facet analysis; secondly, the alternative transformation of the enumerative classification scheme into facet classification scheme; and finally, the facet model of subject directory of domestic search engine. After examining the three methods, my study concludes that a controlled vocabulary by facet analysis can be employed as a useful method in organizing Web resources.

  • PDF

통계분석을 이용한 지하수위 변동 특성 분류

  • 문상기;우남칠
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2001.09a
    • /
    • pp.155-159
    • /
    • 2001
  • A study on multivariate statistical classification of ground water hydrographs was conducted. The vast data of national ground water monitoring network (78 sites of alluvium) were used. 6 factors were selected to classify the ground water level change. Factor analysis was proved to be useful tool for classifying vast hydrogeological data.

  • PDF

The Methods for the Improvement of the KDC 5th Edition of Education Classification System (KDC 제5판 교육학분야 분류체계 개선 방안)

  • Kim, Yeon-Rye
    • Journal of Korean Library and Information Science Society
    • /
    • v.41 no.4
    • /
    • pp.5-33
    • /
    • 2010
  • This study is intended to present methods improving the classification system of KDC education fields after comparing and analyzing the academic system of education, classification system of KDC, NDC, DDC and LCC, and that of the research field classification system of National Research Foundation of Korea. The results of the analysis have revealed that it is required to improve and correct the KDC 5th edition of education including the addition of classification items that reflect the trend of academic development, proper development in the rank classification terms of education detailed fields, addition of detailed subjects, errors of classification symbols and omission of correlative indexes in the classification items. This study has proposed improved methods to solve those problems.

  • PDF

Development of the Standard Classification System of Technical Information in the Field of RI-Biomics and Its Application to the Web System (RI-Biomics 분야 기술정보 표준분류체계 개발 및 적용)

  • Jang, Sol-Ah;Kim, Joo Yeon;Park, Tai-Jin
    • Journal of Radiation Industry
    • /
    • v.8 no.3
    • /
    • pp.155-159
    • /
    • 2014
  • RI-Biomics is a new concept that combines radioisotopes (RI) and Biomics. For efficient collection of information, establishment of database for technical information system and its application to the system, there is an increasing need for constructing the standard classification system of technical information by its systematical classification. In this paper, we have summarized the development process of the standard classification system of technical information in the field of RI-Biomics and its application to the system. Constructing the draft version for the standard classification system of technical information was based on that standard classification one in national science and technology in Korea. The final classification system was then derived through the reconstruction and the feedback process based on the consultation from the 7 experts. These results were applied to the database of technical information system after transforming as standard code. Thus, the standard classification system were composed of 5 large classifications and 20 small classifications, and those classification are expected to establish the foundation of information system by achieving the circular structure of collection-analysis-application of information.

A Comparison Study of Multiclass SVM Methods in Microarray Data

  • Hwang, Jin-Soo;Lee, Ji-Young;Kim, Jee-Yun
    • Journal of the Korean Data and Information Science Society
    • /
    • v.17 no.2
    • /
    • pp.311-324
    • /
    • 2006
  • The Support Vector Machine(SVM) is very functional and efficient classification method to any other classification analysis method. However, its optimal extension to more than two classes is not obvious. In this paper several multi-category SVM methods are introduced and compared using simulation and real data sets. Also comparison with traditional multi-category classification and SVM based methods is performed.

  • PDF

Analysis of Cone Penetration Data Using Fuzzy C-means Clustering (Fuzzy C-means 클러스터링 기법을 이용한 콘 관입 데이터의 해석)

  • 우철웅;장병욱;원정윤
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.45 no.3
    • /
    • pp.73-83
    • /
    • 2003
  • Methods of fuzzy C-means have been used to characterize geotechnical information from static cone penetration data. As contrary with traditional classification methods such as Robertson classification chart, the FCM expresses classes not conclusiveness but fuzzy. The results show that the FCM is useful to characterize ground information that can not be easily found by using normal classification chart. But optimal number of classes may not be easily defined. So, the optimal number of classes should be determined considering not only technical measures but engineering aspects.

PCA-based Linear Dynamical Systems for Multichannel EEG Classification (다채널 뇌파 분류를 위한 주성분 분석 기반 선형동적시스템)

  • Lee, Hyekyoung;Park, Seungjin
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2002.10d
    • /
    • pp.232-234
    • /
    • 2002
  • EEG-based brain computer interface (BCI) provides a new communication channel between human brain and computer. The classification of EEG data is an important task in EEG-based BCI. In this paper we present methods which jointly employ principal component analysis (PCA) and linear dynamical system (LDS) modeling for the task of EEG classification. Experimental study for the classification of EEG data during imagination of a left or right hand movement confirms the validity of our proposed methods.

  • PDF

NMF-Feature Extraction for Sound Classification (소리 분류를 위한 NMF특징 추출)

  • Yong-Choon Cho;Seungin Choi;Sung-Yang Bang
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2003.10a
    • /
    • pp.4-6
    • /
    • 2003
  • A holistic representation, such as sparse ceding or independent component analysis (ICA), was successfully applied to explain early auditory processing and sound classification. In contrast, Part-based representation is an alternative way of understanding object recognition in brain. In this paper. we employ the non-negative matrix factorization (NMF)[1]which learns parts-based representation for sound classification. Feature extraction methods from spectrogram using NMF are explained. Experimental results show that NMF-based features improve the performance of sound classification over ICA-based features.

  • PDF