• Title/Summary/Keyword: CL Surface

Search Result 1,958, Processing Time 0.038 seconds

A Study on the Physico-Chemical Characteristics of Acid Sulfate Soil in Kimhae Plain (김해평야(金海平野)에 분포(分布)된 특이산성토(特異酸性土)(답)(沓)의 이화학적성질(理化學的性質)에 관(關)한 조사연구(調査硏究))

  • Park, N.J.;Park, Y.S.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.2 no.1
    • /
    • pp.15-26
    • /
    • 1969
  • The study on physico-chemical characteristics of the acid sulfate soil present in Kimhae plain was carried out with 28 surface and subsoils from lower and higher produtive area and two representative profile samples from the areas reclaimed a few decades ago and around 10 years ago respectively. 1. There are no differences in soil texture between lower and higher productive soils being mostly silty clay loam and silty clay. 2. Very significant differences in pH, degree of base saturation and extractable aluminium content are observed; lower pH, lower degree of base saturation and higher aluminium in the lower productive soils and subsoils. The pH and degree of base saturation of these soils are extremely low whereas aluminium content is very high compared to ordinary paddy soil. 3. Cation exchange capacity of these soils are slightly higher than ordinary paddy soils. In higher productive soils, exchangeable calcium and magnesium are of same order, whereas in lower productive soils magnesium content is appreciably higher than calcium. 4. Though the soil is derived from marine and estuarine sediment, the soluble salt content is not high. There are only few lower productive surface soils and subsoils having Ec values of the saturation extracts higher than 4 mmhos but lower than 9 mmhos/cm. 5. Organic matter content of these soils is a bit higher compared to ordinary paddy soils, but, nitrogen content is comparatively low. C/N ratio of these soils is around 12. 6. Sulfur content is considerably higher but oxidizable sulfur is found to be very low. Total sulfur is generally high in subsoils and lower productive soils. 7. Active iron and available silica are slightly higher than ordinary paddy soils but easily reducible manganese is very low. Almost no differences are also observed between lower and higher productive soils. 8. Available phosphorus content is extremely low in particular, regardless of higher or lower productive soils. 9. The two representative profiles from the area of earlier reclamation and recent one show that samples from earlier reclaimed area contain less amount of free acids, sulfur compounds, toxic aluminium and soluble salts etc. than the other. This indicate greater leaching and possible addition of lime for a longer period of time. 10. From the results obtained, it can be concluded the higher productivity of group I soils is due to the greater leaching and neutralisation of acidity by liming materials, It can also be concluded that the productivity of both types can be increased by addition of liming materials and improvement of drainage facilities.

  • PDF

Assessment of Water Quality and Pollutant Loads on Agricultural Watershed in Jeonbuk Province (전북지역 농업용 하천유역의 수질과 부하량 특성)

  • Uhm, Mi-Jeong;Moon, Young-Hun;Ahn, Byung-Koo;Shin, Yong-Kyu
    • Korean Journal of Environmental Agriculture
    • /
    • v.27 no.2
    • /
    • pp.111-119
    • /
    • 2008
  • This study was conducted to evaluate water quality and pollutant loads on small agricultural watershed in Jeonbuk province. The EC level of investigated watershed ranged from 0.07 to 0.52 dS/m, BOD level ranged from 0.1 to 5.0 mg/L, and $COD_{Cr}$ level ranged from 0.6 to 17.7 mg/L. As above, contents of water quality indicators covered wide range, but each indicator was alike in mean content every other year. The contents of EC, $Ca^{2+},\;Mg^{2+},\;K^+\;and\;Na^+$ were decreased in rainy season, but the contents of BOD, $COD_{Cr},\;COD_{Mn}$, T-N and T-P were not greatly different as compared to dry season. And high content of SS showed substantial sediments near the surface flow out and influence on water system in rainy season. The pollutant loads measured in terminal of watershed were $9.6{\sim}757.9$ kg/day for BOD, $51.2{\sim}1418.5$ kg/day for T-N and $0.3{\sim}44.7$ kg/day for T-P. The pollutant loads of BOD, T-N and T-P in rainy season increased several times as compared to dry season. In rainy season, watershed with more than 30% in the proportion of paddy field to land showed relatively low discharge and pollutant loads in comparison to watershed with less than 30%. The discharge of watershed in rainy season increased 5.7times compared with the dry season in watershed with less than 30% in the proportion of paddy field to land, whereas was only 2.3times in watershed with more than 30%. The correlation coefficient($R^2$) of regression between discharge and pollutant loads of T-N were higher than those of BOD and T-P.

Relationships between Insensible Perspiration and Thermo Physiological Factors during Wearing Seasonal Clothing Ensembles in Comfort (쾌적한 상태에서 계절별 의복을 착용하고 있는 동안 불감증설과 온열 생리 요소들 간의 관련성)

  • Lee, Joo-Young;Choi, Jeong-Wha;Park, Joon-Hee
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.31 no.12
    • /
    • pp.1700-1709
    • /
    • 2007
  • The purpose of this study was to examine the relationships between thermo-physiological factors and the insensible loss of body weight(IL) of resting women wearing seasonal comfortable clothing. Air temperature was maintained at a mean of 22.5, 24.7, and 16.8 for spring/fall, summer and winter, respectively. We selected a total of 26 clothing ensembles(8 ensembles for spring/fall, 7 ensembles for summer, and 11 ensembles for winter). The results showed that 1) IL was $19{\pm}5g{\cdot}m^{-2}{\cdot}hr$ for spring/fall environment, $21{\pm}5g{\cdot}m^{-2}{\cdot}hr$ for summer, $18{\pm}6{\cdot}m^{-2}{\cdot}hr$ for winter(p<.001). 2) Insensible water loss through respiratory passage(IWR) showed the reverse tendency to IL. IWR was $6{\pm}1g{\cdot}m^{-2}{\cdot}hr$ for winter and $5{\pm}1g{\cdot}m^{-2}{\cdot}hr$ for summer. This difference was significant(p<.001). 3) The proportion of IWR out of whole insensible water loss(IW), had a mean of the mean 28% for summer and 38% for winter(p<.001). 4) In comfort, the heat loss by IW out of heat production had a mean of 25% for spring/fall, 27% for summer, and 23% for winter. 5) There was a weak negative correlation between It and clothing insulation/body surface area covered by clothing. 6) There were significant correlations between IL and air temperature$(T_a)$, air humidity$(H_a)$, energy metabolism, ventilation, mean skin temperature $\={T}_{sk})$ and clothing microclimate humidity$(H_{clo})$. However, the coefficients were less than 0.5. In conclusion, there were weak relationships between the IL and thermo-physiological factors. However, when subjects rested in thermal comfort, the IL was maintained in a narrow range even though the clothing insulation and air temperature were diverse.

Process Optimization of Dextran Production by Leuconostoc sp. strain YSK. Isolated from Fermented Kimchi (김치로부터 분리된 Leuconostoc sp. strain YSK 균주에 의한 덱스트란 생산 조건의 최적화)

  • Hwang, Seung-Kyun;Hong, Jun-Taek;Jung, Kyung-Hwan;Chang, Byung-Chul;Hwang, Kyung-Suk;Shin, Jung-Hee; Yim, Sung-Paal;Yoo, Sun-Kyun
    • Journal of Life Science
    • /
    • v.18 no.10
    • /
    • pp.1377-1383
    • /
    • 2008
  • A bacterium producing non- or partially digestible dextran was isolated from kimchi broth by enrichment culture technique. The bacterium was identified tentatively as Leuconostoc sp. strain SKY. We established the response surface methodology (Box-Behnken design) to optimize the principle parameters such as culture pH, temperature, and yeast extract concentration for maximizing production of dextran. The ranges of parameters were determined based on prior screening works done at our laboratory and accordingly chosen as 5.5, 6.5, and 7.5 for pH, 25, 30, and $35^{\circ}C$ for temperature, and 1, 5, and 9 g/l yeast extract. Initial concentration of sucrose was 100 g/l. The mineral medium consisted of 3.0 g $KH_2PO_4$, 0.01 g $FeSO_4{\cdot}H_2O$, 0.01 g $MnSO_4{\cdot}4H_2O$, 0.2 g $MgSO_4{\cdot}7H_2O$, 0.01 g NaCl, and 0.05 g $CaCO_3$ per 1 liter deionized water. The optimum values of pH and temperature, and yeast extract concentration were obtained at pH (around 7.0), temperature (27 to $28^{\circ}C$), and yeast extract (6 to 7 g/l). The best dextran yield was 60% (dextran/g sucrose). The best dextran productivity was 0.8 g/h-l.

Carbon nanotube field emission display

  • Chil, Won-Bong;Kim, Jong-Min
    • Electrical & Electronic Materials
    • /
    • v.12 no.7
    • /
    • pp.7-11
    • /
    • 1999
  • Fully sealed field emission display in size of 4.5 inch has been fabricated using single-wall carbon nanotubes-organic vehicle com-posite. The fabricated display were fully scalable at low temperature below 415$^{\circ}C$ and CNTs were vertically aligned using paste squeeze and surface rubbing techniques. The turn-on fields of 1V/${\mu}{\textrm}{m}$ and field emis-sion current of 1.5mA at 3V/${\mu}{\textrm}{m}$ (J=90${\mu}{\textrm}{m}$/$\textrm{cm}^2$)were observed. Brightness of 1800cd/$m^2$ at 3.7V/${\mu}{\textrm}{m}$ was observed on the entire area of 4.5-inch panel from the green phosphor-ITO glass. The fluctuation of the current was found to be about 7% over a 4.5-inch cath-ode area. This reliable result enables us to produce large area full-color flat panel dis-play in the near future. Carbon nanotubes (CNTs) have attracted much attention because of their unique elec-trical properties and their potential applica-tions [1, 2]. Large aspect ratio of CNTs together with high chemical stability. ther-mal conductivity, and high mechanical strength are advantageous for applications to the field emitter [3]. Several results have been reported on the field emissions from multi-walled nanotubes (MWNTs) and single-walled nanotubes (SWNTs) grown from arc discharge [4, 5]. De Heer et al. have reported the field emission from nan-otubes aligned by the suspension-filtering method. This approach is too difficult to be fully adopted in integration process. Recently, there have been efforts to make applications to field emission devices using nanotubes. Saito et al. demonstrated a car-bon nanotube-based lamp, which was oper-ated at high voltage (10KV) [8]. Aproto-type diode structure was tested by the size of 100mm $\times$ 10mm in vacuum chamber [9]. the difficulties arise from the arrangement of vertically aligned nanotubes after the growth. Recently vertically aligned carbon nanotubes have been synthesized using plasma-enhanced chemical vapor deposition(CVD) [6, 7]. Yet, control of a large area synthesis is still not easily accessible with such approaches. Here we report integra-tion processes of fully sealed 4.5-inch CNT-field emission displays (FEDs). Low turn-on voltage with high brightness, and stabili-ty clearly demonstrate the potential applica-bility of carbon nanotubes to full color dis-plays in near future. For flat panel display in a large area, car-bon nanotubes-based field emitters were fabricated by using nanotubes-organic vehi-cles. The purified SWNTs, which were syn-thesized by dc arc discharge, were dispersed in iso propyl alcohol, and then mixed with on organic binder. The paste of well-dis-persed carbon nanotubes was squeezed onto the metal-patterned sodalime glass throuhg the metal mesh of 20${\mu}{\textrm}{m}$ in size and subse-quently heat-treated in order to remove the organic binder. The insulating spacers in thickness of 200${\mu}{\textrm}{m}$ are inserted between the lower and upper glasses. The Y\ulcornerO\ulcornerS:Eu, ZnS:Cu, Al, and ZnS:Ag, Cl, phosphors are electrically deposited on the upper glass for red, green, and blue colors, respectively. The typical sizes of each phosphor are 2~3 micron. The assembled structure was sealed in an atmosphere of highly purified Ar gas by means of a glass frit. The display plate was evacuated down to the pressure level of 1$\times$10\ulcorner Torr. Three non-evaporable getters of Ti-Zr-V-Fe were activated during the final heat-exhausting procedure. Finally, the active area of 4.5-inch panel with fully sealed carbon nanotubes was pro-duced. Emission currents were character-ized by the DC-mode and pulse-modulating mode at the voltage up to 800 volts. The brightness of field emission was measured by the Luminance calorimeter (BM-7, Topcon).

  • PDF

Effects of Soil Bulk Density on Saturated Hydraulic Conductivity and Solute Elution Patterns (토양의 용적밀도에 따른 포화수리전도도 및 음이온의 용출양상)

  • Kim, Pil-Joo;Lee, Do-Kyoung;Chung, Doug-Young
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.30 no.3
    • /
    • pp.234-241
    • /
    • 1997
  • The effects of bulk densities(${\rho}_b$) on saturated hydraulic conductivity (Ksat) and solute elution patterns were investigated from five different bulk densities ranging from $1.1Mg/m^3$ to $1.5Mg/m^3$ with each increment of $0.1Mg/m^3$. The hydraulic conductivities observed were divided into two stages: (1) a linearly decrease with increase in bulk density up to $1.4Mg/m^3$, (2) a steady state where the bulk density is greater than $1.4Mg/m^3$. Using the saturated hydraulic conductivity at the steady state, we figured out the equation describing the correlation between bulk densities(${\rho}_b$) and saturated hydraulic conductivity(Ksat) as follows: $Ksat=-19.2({\rho}_b{^2})+6{\rho}_b+15.5$, (r=0.985). Electrical conductivity(EC) measured from the leachate of the soil column showed that EC at the same pore volume were decreased with an increase in the bulk density from $1.2g/cm^3$, $1.5g/cm^3$, as shown in the time taken to collect the same pore volume at each respective bulk density. The maximum relative concentrations (C/Co=1) from the breakthrough curves for the anions of $Cl^-$, $NO_3{^-}$ and $SO_4{^{2-}}$, which are weakly adsorbed on the soil particles, moved to the right of the graph, while a distinctive retardation occurs at the bulk density between $1.3Mg/m^3$ and $1.4Mg/m^3$. The time taken to recover about 90% of indigenous sulphate was approximately twice as those of chloride and nitrate, resulting in slightly stronger adsorption characteristics for sorption sites on the soil surface. Thus, we can conclude that the salt accumulation in green house soil might be significantly influenced by it's bulk density at the soil depth, as well as the adsorption capacity of ions for the sorption sites in soils.

  • PDF

CO2 Sequestration and Utilization of Calcium-extracted Slag Using Air-cooled Blast Furnace Slag and Convert Slag (괴재 및 전로슬래그를 이용한 CO2 저감 및 칼슘 추출 후 슬래그 활용)

  • Yoo, Yeongsuk;Choi, Hongbeom;Bang, Jun-Hwan;Chae, Soochun;Kim, Ji-Whan;Kim, Jin-Man;Lee, Seung-Woo
    • Applied Chemistry for Engineering
    • /
    • v.28 no.1
    • /
    • pp.101-111
    • /
    • 2017
  • Mineral carbonation is a technology in which carbonates are synthesized from minerals including serpentine and olivine, and industrial wastes such as slag and cement, of which all contain calcium or magnesium when reacted with carbon dioxide. This study aims to develop the mineral carbonation technology for commercialization, which can reduce environmental burden and process cost through the reduction of carbon dioxide using steel slag and the slag reuse after calcium extraction. Calcium extraction was conducted using NH4Cl solution for air-cooled slag and convert slag, and ${\geq}98%$ purity calcium carbonate was synthesized by reaction with calcium-extracted solution and carbon dioxide. And we conducted experimentally to minimize the quantity of by-product, the slag residue after calcium extraction, which has occupied large amount of weight ratio (about 80-90%) at the point of mineral carbonation process using slag. The slag residue was used to replace silica sand in the manufacture of cement panel, and physical properties including compressive strength and flexible strength of panel using the slag residue and normal cement panel, respectively, were analyzed. The calcium concentration in extraction solution was analyzed by inductively coupled plasma optical emission spectrometer (ICP-OES). Field-emission scanning electron microscope (FE-SEM) was also used to identify the surface morphology of calcium carbonate, and XRD was used to analyze the crystallinity and the quantitative analysis of calcium carbonate. In addition, the cement panel evaluation was carried out according to KS L ISO 679, and the compressive strength and flexural strength of the panels were measured.

CHANGE OF TASTE PREFERENCE AND TASTE BUD AFTER UNILATERAL LINGUAL NERVE TRANSECTION IN RAT (백서 편측 설신경 손상 후 미각 및 설유두의 변화에 대한 연구)

  • Kim, Yoon-Tae;Jeon, Seung-Ho;Yeom, Hak-Ryol;Kang, Jin-Han;Ahn, Kang-Min;Kim, Sung-Min;Jahng, Jeong-Won;Park, Kyung-Pyo;Lee, Jong-Ho
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.31 no.6
    • /
    • pp.515-525
    • /
    • 2005
  • Purpose of study: Lingual nerve damage can be caused by surgery or trauma such as physical irriatation, radiation, chemotherapy, infection and viral infection. Once nerve damage occurred, patients sometimes complain taste change and loss of taste along with serious disturbance of tongue. The purpose of this study was to evaluate the effects of unilateral lingual nerve transection on taste as well as on the maintenance of taste buds. Materials & Methods: Male Sprague-Dawley rats weighing 220-250g received unilateral transection of lingual nerve, subjected to the preference test for various taste solutions (0.1M NaCl, 0.1M sucrose, 0.01M QHCl, or 0.01M HCl) with two bottle test paradigm at 2, 4, 6, or 8 weeks after the operation. Tongue was fixed with 8% paraformaldehyde. After fixation, they were observed with scanning electron microscope(JSM-$840A^{(R)}$, JEOL, JAPAN) and counted the number of the dorsal surface of the fungiform papilla for changes of fungiform papilla. And, Fungiform papilla were obtained from coronal sections of the anterior tongue(cryosection). After cryosection, immunostaining with $G{\alpha}gust$(I-20)(Santa Cruz Biotechnology, USA), $PLC{\beta}2$(Q-15)(Santa Cruz Biotechnology, USA), and $T_1R_1$(Alpha Diagnostic International, USA) were done. Immunofluorescence of labeled taste bud cells was examined by confocal microscopy(F92-$300^{(R)}$, Olympus, JAPAN). Results: The preference score for salty and sweet tended to be higher in the operated rats with statistical significance, compared to the sham rats. Fungiform papilla counting were decreased after lingual nerve transaction. In 2 weeks, maximum differences occurred. Gustducin and $T_1R_1$ expressions of taste receptor in 2 and 4 weeks were decreased. $PLC{\beta}2$ were not expressed in both experimental and control group. Conclusion: This study demonstrated that the taste recognition for sweet and salty taste changed by week 2 and 4 after unilateral lingual nerve transection. However, regeneration related taste was occurred in the presence of preserving mesoneurial tissue and the time was 6 weeks. Our results demonstrated that unilateral lingual nerve damage caused morphological and numerical change of fungiform papilla. It should be noted in our study that lingual nerve transection resulted in not only morphological and numerical change but also functional change of fungiform papillae.