• 제목/요약/키워드: CL(Cutter location)-point

검색결과 9건 처리시간 0.022초

3축 NC 가공을 위한 CL Z-map 모델링 방법의 비교연구 (Comparative study of CL Z-map modeling for 3-axis NC machining)

  • 박정환;정연찬;최병규
    • 한국경영과학회:학술대회논문집
    • /
    • 대한산업공학회/한국경영과학회 2000년도 춘계공동학술대회 논문집
    • /
    • pp.389-392
    • /
    • 2000
  • Gouge-free tool-path generation is an important issue in mold & die machining and researches on cutter interference avoidance can be found in many articles. One of the various methods is construction of tool-offlet surface or cutter-location (CL) surface on which the cutter-center point (CL-point) locates. Provided that the CL surface is represented in a suitable form, cutter-interference avoidance can be performed without the burden of computing CL data for every cutter-contact (CC) point. In the paper, various methods of constructing a CL surface in the z-map form are presented, where z-map is a special form of discrete nonparametric representation in which the height values at grid points on the xy-plane are stored as a 2D array z[i,j].

  • PDF

3축 NC 가공을 위한 CL Z-map 모델링 방법의 비교 연구 (Comparative Study of CL Z-map Modeling for 3-Axis NC Machining)

  • 박정환;정연찬;최병규
    • 대한산업공학회지
    • /
    • 제26권4호
    • /
    • pp.325-335
    • /
    • 2000
  • Gouge-free tool-path generation is an important issue in mold & die machining and researches on cutter interference avoidance can be found in many articles. One of the various methods is construction of tool-offset surface of cutter-location (CL) surface on which the cutter-center point (CL-point) locates. Provided that the CL surface is represented in a suitable form, cutter-interference avoidance can be performed without the burden of computing CL data for every cutter-contact (CC) point. In the paper, various methods of constructing a CL surface in the z-map form are presented, where z-map is a special form of discrete nonparametric representation in which the height values at grid points on the xy-plane are stored as a 2D array z[i,j].

  • PDF

공구이동궤적 모델을 이용한 5축 페이스밀링 가공데이터 생성 (Five-axis CL Data Generation by Considering Tool Swept Surface Model in Face Milling of Sculptured Surface)

  • 이정근;박정환
    • 한국CDE학회논문집
    • /
    • 제9권1호
    • /
    • pp.35-43
    • /
    • 2004
  • It is well known that the five-axis machining has advantages of tool accessibility and machined surface quality when compared with conventional three-axis machining. Traditional researches on the five-axis tool-path generation have addressed interferences such as cutter gouging, collision, machine kinematics and optimization of a CL(cutter location) or a cutter position. In the paper it is presented that optimal CL data for a face-milling cutter moving on a tool-path are obtained by incorporating TSS(tool swept surface) model. The TSS model from current CL position to the next CL position is constructed based on machine kinematics as well as cutter geometry, with which the deviation from the design surface can be computed. Then the next CC(cutter-contact) point should be adjusted such that the deviation conforms to given machining tolerance value. The proposed algorithm was implemented and applied to a marine propeller machining, which proved effective from a quantitative point of view. In addition, the algorithm using the TSS can also be applied to avoid cutter convex interferences in general three-axis NC machining.

포텐셜 에너지를 이용한 5축 NC 밀링의 공구방향 결정 (Determination of Tool Orientation in 5-Axis Milling Using Potential Energy Method)

  • 조인행;이건우
    • 한국정밀공학회지
    • /
    • 제13권6호
    • /
    • pp.161-167
    • /
    • 1996
  • In five-axis milling, optimal CL-data (cutter location data) should be generated to have advantages over three-axis milling in terms of accuracy and efficiency. This paper presents an algorithm for generating collision-free CL-data for five-axis milling using potential energy method. By virtually charging the cutter and part surfaces with static electricity, global collision as wells as local interference is eliminated. Additionally, machining efficiency is improved by minimizing the curvature difference between the part surface and tool swept surface at a CC-point (cutter contact point) simultaneously.

  • PDF

공구경로 곡면을 이용한 이송속도 최적화 (Feedrate Optimization using CL Surface)

  • 김수진;양민양
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.547-552
    • /
    • 2003
  • In mold machining, there are many concave machining regions where chatter and tool deflection occur since MRR (material removal rate) increases as curvature increases even though cutting speed and depth of cut are constant. Boolean operation between stock and tool model is widely used to compute MRR in NC milling simulation. In finish cutting, the side step is reduced to about 0.3mm and tool path length is sometimes over 300m. so Boolean operation takes long computation time and includes much error if the resolution of stock and tool model is larger than the side step. In this paper, curvature of CL(cutter location) surface and side step of tool path is used to compute the feedrate for constant MRR machining. The data structure of CL surface is Z-map generated from NC tool path. The algorithm to get local curvature from discrete data was developed and applied to compute local curvature of CL surface. The side step of tool path was computed by point density map which includes cutter location point density at each grid element. The feedrate computed from curvature and side step is inserted to new tool path to regulate MRR. The resultants wire applied to feedrate optimization system which generates new tool path with feedrate from NC codes for finish cutting. The system was applied to speaker mold machining. The finishing time was reduced to 12.6%. tool wear was reduced from 2mm to 1.1mm and chatter marks and over cut on corner were removed.

  • PDF

공구경로 곡면을 이용한 이송속도 최적화 (Feedrate Optimization Using CL Surface)

  • 김수진;정태성;양민양
    • 한국정밀공학회지
    • /
    • 제21권4호
    • /
    • pp.39-47
    • /
    • 2004
  • In mold machining, there are many concave machining regions where chatter and tool deflection occur since MRR(material removal rate) increases as curvature increases even though cutting speed and depth of cut are constant. Boolean operation between stock and tool model is widely used to compute MRR in NC milling simulation. In finish cutting, the side step is reduced to about 0.3mm and tool path length is sometimes over loom, so Boolean operation takes long computation time and includes much error if the resolution of stock and tool model is larger than the side step. In this paper, curvature of CL (cutter location) surface and side step of tool path is used to compute the feedrate for constant MRR machining. The data structure of CL surface is Z-map generated from NC tool path. The algorithm to get local curvature from discrete data was developed and applied to compute local curvature of CL surface. The side step of tool path was computed by point density map which includes cutter location point density at each grid element. The feedrate computed from curvature and side step is inserted to new tool path to regulate MRR. The resultants were applied to feedrate optimization system which generates new tool path with feedrate from NC codes for finish cutting. The system was applied to the machining of speaker and cellular phone mold. The finishing time was reduced to 12.6%, tool wear was reduced from 2mm to 1.1mm and chatter marks and over cut on corner were reduced, compared to the machining by constant feedrate. The machining time was shorter to 17% and surface quality and tool was also better than the conventional federate regulation using curvature of the tool path.

공구 끝의 일정한 절삭속도를 위한 5축 NC 가공 데이터의 이송속도 산출 (Calculating the Feedrate of 5-Axis NC Machining Data for the Constant Cutting Speed at a CL-point)

  • 이철수;이제필
    • 한국CDE학회논문집
    • /
    • 제6권2호
    • /
    • pp.69-77
    • /
    • 2001
  • This paper describes a method of calculating the feedrate for the constant cutting speed at a CL-point in 5-axis machining. Unlike 3-axis machining, 5-axis machining has the flexibility of the tool motions due to two rotation axes. But the feedrate at joint space differs from the feedrate at a tool tip(the CL-point) of the 3D Euclidean space for the tool motions. The proposed algorithm adjusts the feedrate based on 5-axis NC data, the kinematics of a machine, and the tool length. The following calculations is processed for each NC block to generate the new feedrate; 1) calculating the moving distance at the CL-point, 2) calculating the moving time by the given feedrate, 3) calculating the feedrate of each axis, 4) getting the new feedrate. The proposed algorithm was applied to a 5-axis machine which had a tilting spindle and a rotary table. Totally, the result of the algorithm reduced the machining time and smoothed the cutting-load by the constant cutting speed at the CL-point.

  • PDF

Z-Map 모델을 이용한 3차원 CNC 가공계획 및 절삭시뮬레이션에 관한 연구 (A Study on the 3-D CNC Cutting Planning and Simulation by Z-Map Model)

  • 송수용;김석일
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1994년도 추계학술대회 논문집
    • /
    • pp.683-688
    • /
    • 1994
  • Recently, the Z-Map model has been used widely to represent the three dimensional geometric shape and to achieve the cross-section and point evaluation of the shape. In this paper, the CNC cutting planning and simulation modules for product with three dimensional geometric shape are realized based on the Z-Map model. The realized system has the various capabilities related to the automatic generation of tool path for the rough and finish cutting processes, the automatic elimination of overcut, the automatic generation of CNC program for a machining center and the cutting simulation. Especially, the overcut-free tool path is obtained by using the CL Z-Map models which are composed of the offset surfaces of the geometric shape of product.

  • PDF

Z-Map모델을 이용한 3차원 CNC가공계획 및 절삭시뮬레이션에 관한 연구 (A study on the 3-D CNC cutting planning and simulation by Z-Map model)

  • 송수용;김석일
    • 한국정밀공학회지
    • /
    • 제13권5호
    • /
    • pp.115-121
    • /
    • 1996
  • Recently, the Z-Map model has been used widely to represent the three dimensional geometric shape and to achieve the cross-section and point evaluation of the shape. In this paper, the CNC cutting planning and simulation modules for product with three dimensional geometric shape are realized based on the Z-Map model. The realized system has the various capabilities related to the automatic generation of tool path for the rough and finish cutting processes, the automatic elimination of overcut, the automatic generation of CNC program for a machining center and the cutting simulation. Especially, the overcut-free tool path is obtained by using the CL Z-Map models which are composed of the offset surfaces of the geometric shape of product.

  • PDF