• Title/Summary/Keyword: CHMA

Search Result 5, Processing Time 0.019 seconds

Development of a Synthetic Process for N-Cyclohexylmaleiamic Acid Isobutyl Ester (N-사이크로헥실말레아민산 이소부틸 에스테르의 제조 공정 개발)

  • Moon, Bu-Hyun;Ju, Chang-Sik
    • Korean Chemical Engineering Research
    • /
    • v.51 no.5
    • /
    • pp.545-549
    • /
    • 2013
  • For the purpose of development of effective synthetic process of CHMI, a series of experiments were preformed on the preparation of CHMAIE, the intermediate of CHMI. For the first step, CHMA was synthesized by dropwise mixing of cyclohexylamine with maleic anhydride in toluene and 98.2% of theoretical CHMA was obtained by precipitation at $10^{\circ}C$ for 2 hours. The optimum reaction temperature of the esterfication, preparation reaction of CHAMIE from CHMA, was $68^{\circ}C$, and equilibrium conversion at optimum temperature was 98.5%. Equilibrium reaction time decreased with reaction temperature, and 4 hours was taken to reach equilibrium at optimum reaction temperature. Toluene in the final reaction product could be recovered by vacuum distillation. The recovery of toluene was increased with distillation temperature and 98% of toluene could be recovered at $55^{\circ}C$.

Study on Physical Properties of Synthesized Water-based Tackifier According to Acrylic Monomer Structure and Content (아크릴 단량체 구조 및 조성에 따른 수계 점착부여제의 합성 및 물성 연구)

  • Kim, Se-Jin;Baek, Lan-Ji;Jeong, Boo-Young;Huh, PilHo;Cheon, JungMi;Chun, Jae-Hwan
    • Journal of Adhesion and Interface
    • /
    • v.23 no.2
    • /
    • pp.25-32
    • /
    • 2022
  • There has been a growing demand for water based-type PSA due to environmental regulations for solvent-type PSA. And accordingly, there is a growing expectation as well for tackifiers used to compensate for the problem of deterioration of physical properties. Therefore, In this study, water-based tackifiers were synthesized by changing the contents of hard and functional acrylic monomers CHMA, IBOA, and AA. And these were added to the pressure-sensitive adhesive at 10 phr and their physical properties were compared. Tackiness slightly decreased as CHMA increased and IBOA decreased. Since the intermolecular bonding force increased due to the increase in AA content, the lower the AA content showed better results. Peel strength increased as the tackifiers were added because the fluidity of the polymer chain increased. And higher AA content showed better results because more hydrogen bonds were formed. The holding power tended to decrease as CHMA increased because the content of IBOA relatively decreased which has a large influence on the holding power. And higher AA content showed better results.

The Effects of Intramolecular Interactions of Random Copolymers on the Phase Behavior of Polymer Mixtures

  • Kim, M. J.;J. E. Yoo;Park, H. K.;Kim, C. K.
    • Macromolecular Research
    • /
    • v.10 no.2
    • /
    • pp.91-96
    • /
    • 2002
  • To explore the effects of intramolecular interactions within the copolymer on the phase separation behavior of polymer blends, copolymers having two different types of intramolecular interactions, i.e., intramolecular repulsion and intramolecular attraction were prepared . In this study, poly(styrene-co-methylmethacrylate) (P(S-MMA)) having intramolecular repulsion caused by positive interaction between styrene and MMA and poly(styrene-co-ethyl-methacrylate) (P(S-EMA)) and poly(styrene-co-cyclohexylmethacrylate) (P(S-CHMA)) having intramolecular attraction caused by negative interaction between styrene and methacrylate were blended with tetramethyl poly-carbonate (TMPC). The phase behavior of blends was examined as a function of copolymer composition and blend composition. TMPC formed miscible blends with styrenic copolymers containing less than certain amount of methacrylate. The phase separation temperature of TMPC blends with copolymer such as P(S-MMA) and P(S-EMA), first increases with methacrylate content, goes through a maximum and then decreases just prior to the limiting content of methacrylate for miscibility, while that of TMPC blends with P(S-CHMA) always decreases. The calculated interaction energy for TMPC-P(S-EMA) pair is negative and monotonically increases with EMA content of the copolymer. Such behavior contradicted the general notion that systems with more favorable energetic interactions have higher LCST, The detailed inspection of the lattice-fluid theory related to the phase behavior was performed to explain such behavior.

cdma2000 1xEV-DO의 시큐리티 고찰

  • 신상욱;류희수;정교일
    • Review of KIISC
    • /
    • v.12 no.6
    • /
    • pp.81-92
    • /
    • 2002
  • cdma2000 1xEV(Evolution)-DO(Data Only)는 기존의 IS-2000 무선 프로토콜과 달리 패킷 데이터 서비스를 위한 전용 프로토콜로, 최대 2.4Mbps의 전송 속도를 제공한다. cdma2000 1xEV-DO는 이전의 프로토콜과 단리 무선 인터페이스 계층 구조에 따로 분리된 시큐리티 계층(security layer)을 가지며, 이 시큐리티 계층에서 패킷 데이터 서비스를 위한 인증과 암호화 서비스를 제공한다. 본 고에서는 패깃 데이터 서비스를 위한 전용 프로토콜인 chma2000 1xEV-DO의 시큐리티 계층의 4가지 프로토콜인 키 교환 프로토콜, 인증 프로토콜, 암호화 프로토롤, 시큐리티 프로토콜을 분석한다.

Development of the Commercialization of N-Cyclohexylmaleimide for Strengthening the Whiteness and Heat Resistance of Polymer Resins (고분자 수지의 백색도 및 내열성을 향상시키는 N-Cyclohexylmaleimide의 상업화를 위한 개발)

  • Ju, Sung Han;Yang, Dong Hyeon;Kim, Seok Chan
    • Applied Chemistry for Engineering
    • /
    • v.31 no.2
    • /
    • pp.226-229
    • /
    • 2020
  • N-phenylmaleimide (PMI), a compound for strengthening the heat resistance of ABS resin, is a yellow crystal. Therefore, copolymers modified with PMI exhibit color, which limits their use. In order to overcome such disadvantage, the demand for N-cyclohexylmaleimide (CHMI), which has similar properties to PMI and also is a white crystal, is increasing. However, CHMI is difficult to industrialize due to the formation of various by-products during synthesis, which requires an additional purification process resulting in a low yield. In this study, composite catalysts were developed to improve these problems and industrially produce CHMI. Finally, CHMI was synthesized with a 85% yield and at least 99.5% purity.