• Title/Summary/Keyword: CHL

Search Result 913, Processing Time 0.023 seconds

Chlorophyll a/b Ratio as a Criterion for the Reliability of Absorbance Values Measured for the Determination of Chlorophyll Concentration (엽록소 농도 결정을 위하여 측정한 흡광도 값의 신뢰도 검정 지표로서 엽록소 a/b 비례치)

  • Wu, Guangxi;Lee, Choon-Hwan
    • Journal of Life Science
    • /
    • v.29 no.5
    • /
    • pp.509-513
    • /
    • 2019
  • The Beer-Lambert law states that absorbance is proportional to the concentration of a solute in a solution at a given wavelength. This linearity works for an ideal or a 'sufficiently diluted' solution, so this linearity is often used as a criterion for the fidelity of the absorbance value measured. In this study, we used a chlorophyll (Chl) solution, isolated from rice leaves with 80% acetone to test the use of the Chl a/b ratio as an additional criterion for checking the fidelity of measured values using four different absorption spectrophotometers: Cary4E, UV-1650PC, Versamax (a microplate reader), and NanoDrop 1,000(which can handle a $4{\mu}l$ aliquot). We used Chl solutions of varying concentrations from $0.2{\mu}g/ml$ to $200{\mu}g/ml$ to measure absorbance values at 645 nm and 663 nm and checked the linearity first. The results indicated that the range of Chl concentrations that we can rely on based on the linearity was similar to the range in which the calculated Chl concentrations based on the measured absorbance values agreed with the known concentrations. However, some border cases or cases with very low Chl concentrations inside the fidelity range of Chl concentrations did not agree with the criterion that the Chl a/b ratio should not change after dilution of the Chl in the solution. These results suggest that the Chl a/b ratio is a better criterion for the reliability of the absorbance values measured for the determination of chlorophyll concentration than the criterion based on the linearity suggested by the Beer-Lambert law.

Biological Accessibility to Algae Control through Measurement of Filtration Rate of Three Freshwater Bivalves (담수 이매패류 3종의 여과율 측정을 통한 조류 제어의 생물학적 접근 가능성)

  • Na, Young-Kwon;Kim, Dong-Kyun;Kim, Young-Shin;Park, Jung-Ho;Kwak, Ihn-Sil
    • Korean Journal of Ecology and Environment
    • /
    • v.54 no.1
    • /
    • pp.39-48
    • /
    • 2021
  • In order to control algal bloom, which causes environmental problems such as eutrophication in freshwater ecological environments, many attempts have recently been made using biological approaches. Among them is filtration using bivalve. Algae control with filter-feeding bivalves is emerging as an eco-friendly method. In this study, bivalves collected at Baekje weir in Geum River in Korea from Jun to Sep 2020 were tested to find out the possibility of algae control using filter-feeding bivalves through laboratory experiments. The Unio douglasiae, Anodonta woodiana, and Anodonta arcaeformis collected from Baekje weir were put into a water tank (2 L) containing Clorella vulgaris, and as a result, the average filtration rate was 95.9% per animal after 24 hrs. Calculating this with the Chl-a concentration converted to a calibration curve, it was found that the average of 154.84 ㎍ L-1 of Chl-a was reduced. Based on this calculation, the possibility that one bivalve can eliminate Chl-a in one month is 0.0005%. It is expected that the effect is 20.14% when there are 40,000 animals. These results indirectly showed how effective bivalve's ability to control Chl-a in their habitat is. Although this study was limited to calculating the algae control ability of aquatic ecosystem based on the filtration rate of bivalve and the corresponding Chl-a reduction rate, it is thought that it will be used as basic data for integrated research from various factors and viewpoints (phytoplankton, aquatic plants, benthic organisms, and sediments) through additional research.

Composition and Distribution of Phytoplankton with Size Fraction Results at Southwestern East/Japan Sea

  • Park, Mi-Ok
    • Ocean Science Journal
    • /
    • v.41 no.4
    • /
    • pp.301-313
    • /
    • 2006
  • Abundance and distribution of phytoplankton in seawater at southwestern East/Japan Sea near Gampo were investigated by HPLC analysis of photosynthetic pigments during summer of 1999. Detected photosynthetic pigments were chlorophyll a, b, $c_{1+2}$ (Chl a, Chl b, Chl $c_{1+2}$), fucoxanthin (Fuco), prasinoxanthin (Pras), zeaxanthin (Zea), 19'-butanoyloxyfucoxanthin (But-fuco) and beta-carotene (B-Car). Major carotenoid was fucoxanthin (bacillariophyte) and minor carotenoids were Pras (prasinophyte), Zea (cyanophyte) and But-fuco (chrysophyte). Chl a concentrations were in the range of $0.16-8.3\;{\mu}g/land$ subsurface chlorophyll maxima were observed at 0-10m at inshore and 30-50 m at offshore. Thermocline and nutricline tilted to the offshore direction showed a mild upwelling condition. Results from size-fraction showed that contribution from nano+picoplankton at Chl a maximum layer was increased from 18% at inshore to 69% at offshore on average. The maximum contribution from nano+picoplankton was found as 87% at St. E4. It was noteworthy that contribution from nano+picoplanktonic crysophytes and green algae to total biomass of phytoplankton was significant at offshore. Satellite images of sea surface temperature indicated that an extensive area of the East/Japan Sea showed lower temperature ($<18\;^{\circ}C$) but the enhanced Chi a patch was confined to a narrow coastal region in summer, 1999. Exceptionally high flux of low saline water from the Korea/Tsushima Strait seemed to make upwelling weak in summer of 1999 in the study area. Results of comparisons among Chi a from SeaWiFS, HPLC and fluorometric analysis showed that presence of Chi b cause underestimation of Chi a about 30% by fluorometric analysis but overestimation by satellite data about 30-75% compared to HPLC data.

Long-term Water Quality Fluctuations in Daechung Reservoir and the Limiting Nutrient Evaluations Using In Situ Enclosure Nutrient Enrichment Bioassays (NEBs) (대청호에서 장기간 수질변동 및 인위적 Enclosure 영양염 투여실험에 따른 제한 영양염류 평가)

  • Park, Hyang-Mi;An, Kwang-Guk
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.4
    • /
    • pp.551-560
    • /
    • 2012
  • The objectives of this study were to elucidate spatio-temporal heterogeneity of water chemistry and develop empirical models using trophic variables in Daechung Reservoir during 2005-2010 along with in situ tests of nutrient enrichment bioassays (NEB). The relations of water quality parameters in regard to precipitation showed that seasonal and interannual fluctuations of biological oxygen demand (BOD), total nitrogen (TN) and pH were minor, whereas conductivity, suspended solids (SS), and total phosphorus (TP) were largely varied in response to the magnitude of rainfall. The CHL maxima occurred immediately after the spate of TP during the high flow, indicating that phytoplankton growth was directly controlled by phosphorus. Empirical linear models of CHL-TP indicated that the variation of CHL in premonsoon was accounted 60% ($R^2$ = 0.60, p < 0.05, n = 54) by TP. In the mean time, empirical models of annual CHL-TN showed that the variation of CHL was weakly accounted ($R^2$ = 0.16, p < 0.001) by TN and more strongly ($R^2$ = 0.44, p < 0.001) by TP. Thus, the variation of CHL was more explained by the variation of TP than TN. In situ tests of Nutrient Enrichment Bioassays (NEBs) showed that the growth of CHL was greater in the P-treatments (as $PO_4-P$) than the control and N-treatment (as $NO_3-P$). Overall, our results suggest that phosphorus was aprimary limiting nutrient controlling the seasonal phytoplankton growth, based on the in situ experiments of NEBs.

Seasonal Difference in Linear Trends of Satellite-derived Chlorophyll-a in the East China Sea (위성 해색자료에서 추정한 동중국해 클로로필 선형경향의 계절별 차이)

  • Son, Young Baek;Jang, Chan Joo;Kim, Sang-Hyun
    • Ocean and Polar Research
    • /
    • v.35 no.2
    • /
    • pp.147-155
    • /
    • 2013
  • The purpose of this study is to investigate seasonal difference in linear trends in satellite-derived chlorophyll-a concentration (Chl-a) and their related environmental changes in the South Sea of Korea (SSK) and East China Sea (ECS) for recent 15 years (Jan. 1998~Dec. 2012) by analyzing climatological data of Chl-a, Rrs(555), sea surface wind (SSW) and nutrient. A linear trend analysis of Chl-a data reveals that, during recent 15 years, the spring bloom was enhanced in most of the ECS, while summer and fall blooms were weakened. The increased spring (Mar. - May) Chl-a was associated with strengthened winter (Dec. - Feb.) wind that probably provided more nutrient into the upper ocean from the deep. The causes of decreased summer (Jun. - Aug.) Chl-a in the northern ECS were uncertain, but seemed to be related with the nutrient limitation. Recently (after 2006), low-salinity Changjiang diluted water in the south of Jeju and the SSK had lower phosphate that caused increase in N/P ratio with Chl-a decrease. The decreased fall (Sep. - Nov.) Chl-a was associated with weakened wind that tends to entrain less nutrient into the upper ocean from the deep. This study suggests that phytoplankton in the ECS differently changes in response to environmental changes depending on season and region.

The Trend of Water Quality Variations and Correlation between COD & Chl-a Concentration for the Juam Reservoir (주암호의 수질변화 및 COD 및 Chl-a 농도의 상관관계 분석)

  • Yang, Hyung-Jae;Kim, Byung-Ik
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.12
    • /
    • pp.1331-1336
    • /
    • 2006
  • The Juam reservoir, hydrological investigations on the catchment environment and pollutants inflow have been carried out simultaneously. The average COD in 1992 observed in Juam reservoir was 2.3 mg/L, and reached to 2.72 mg/L in 2005 that is increased 0.23 mg/L for 13 years. Following this trend, the water duality is expected to deteriorate down to the second-grade water quality exceeding the 3 mg/L limit in 2010. The concentration exceeding the value of 46.5 $mg/m^3$ will not guarantee the water quality better than $2^{nd}$ grade drinking water resource since correlative between COD and chl-a is y=0.0732x+2.5953 its $r^2=0.8141$. This result will help control the algal growth in the future by taking into account the expected value as a monitoring target.

Development of Novel Microsatellite Markers for Strain-Specific Identification of Chlorella vulgaris

  • Jo, Beom-Ho;Lee, Chang Soo;Song, Hae-Ryong;Lee, Hyung-Gwan;Oh, Hee-Mock
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.9
    • /
    • pp.1189-1195
    • /
    • 2014
  • A strain-specific identification method is required to secure Chlorella strains with useful genetic traits, such as a fast growth rate or high lipid productivity, for application in biofuels, functional foods, and pharmaceuticals. Microsatellite markers based on simple sequence repeats can be a useful tool for this purpose. Therefore, this study developed five novel microsatellite markers (mChl-001, mChl-002, mChl-005, mChl-011, and mChl-012) using specific loci along the chloroplast genome of Chlorella vulgaris. The microsatellite markers were characterized based on their allelic diversities among nine strains of C. vulgaris with the same 18S rRNA sequence similarity. Each microsatellite marker exhibited 2~5 polymorphic allele types, and their combinations allowed discrimination between seven of the C. vulgaris strains. The two remaining strains were distinguished using one specific interspace region between the mChl-001 and mChl-005 loci, which was composed of about 27 single nucleotide polymorphisms, 13~15 specific sequence sites, and (T)n repeat sites. Thus, the polymorphic combination of the five microsatellite markers and one specific locus facilitated a clear distinction of C. vulgaris at the strain level, suggesting that the proposed microsatellite marker system can be useful for the accurate identification and classification of C. vulgaris.

Development of New Omeprazole-lon Exchange Resin Complex (이온교환수지를 이용한 새로운 오메프라졸 복합체 개발)

  • Rhee, Gye-Ju;Lee, Ki-Myung;Kim, Eun-Young;Lee, Chang-Hyun;Hwang, Sung-Joo
    • YAKHAK HOEJI
    • /
    • v.38 no.3
    • /
    • pp.250-264
    • /
    • 1994
  • Omeprazole(OMZ)-cholestyramine(CHL) and various OMZ-Dowex resin complexes were prepared by reaction between OMZ and activated resins in 0.1N NaOH solution. And their physical properties were tested by means of infrared(IR), differential scaning caloimeter(DSC), X-ray diffraction. Chemical stability of OMZ-CHL was increased markedly compared with OMZ and the decomposition of OMZ-CHL followed the pseudo first-order kinetics and the rate constants were $2.743{\times}10^{-4}/day$ at $20^{\circ}C$, $7.83{\times}10^{-3}day^{-1}$ under 80% RH and $1.68{\times}10^{-2}day^{-1}$ under UV radiation, respectively. On the other hand, the rate constants of OMZ were $2.996{\times}10^{-4}day^{-1}$ at $20^{\circ}C$, $1.17{\times}10^{-2}day^{-1}$ under 85% RH, and $4.07{\times}10^{-2}day^{-1}$ under UV radiation, respectively. The rates of dissolution of OMZ-CHL bulk and OMZ-CHL tablet were 100% and more than 85% in 15 minutes, respectively, which were increased than OMZ base and OMZ-tablet. In the acute toxicological test, the value of oral $LD_{50}$(mouse) was 4.608 g/kg. OMZ-CHL was pelletized using lactose, polyethyle neglycol(PEG), D-sorbitol, Avicel PH 101, sodium laurylsulfate and polyvinylpyrrolidone(PVP) K-30, and enteric coated with HPMCP, Myvacet, acetone, ethanol and cetanol, of which dissolution rate was found to be more than 85% in 10 minutes. From the above results, it was found that OMZ-CHL is a useful means for development of new oral dosage forms of OMZ.

  • PDF

SEASONAL VARIATION OF THE OCEANIC WATER INTRUSIONS INTO KAGOSHIMA BAY DERIVED FROM THE SATELLITE SST AND CHL-A IMAGES

  • Hosotani, Kazunori
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.61-64
    • /
    • 2008
  • Seasonal distribution of the oceanic water intrusion was investigated using satellite SST (sea surface temperature) and chl-a (chlorophyll-a) images taken by the MODIS Aqua sensor. The warm water mass emanating periodically from the meandering Kuroshio Current brings the oceanic water intrusion, known as the 'Kyucho' phenomenon, into Kagoshima bay during the winter. Satellite SST images and buoy robot data show that this warm water intrusion has the characteristics of a semigeostrophic gravity current influenced by the Coriolis effect. However, it is difficult to find the oceanic water intrusion during the summer season considering that it is accompanied by thermal stratification, and SST shows almost the same temperature between the inner side of the bay and the ocean. In this research, the satellite chl-a images taken by MODIS Aqua were employed instead of SST images to reveal the oceanic water intrusion in each season. The enclosed bay has the tendency to undergo eutrophication caused by organic materials from land and differences in chl-a concentration of the bay water and the oceanic water. As a result, distribution of low concentration chl-a with oceanic water intrusion in summer season shows almost the same pattern in winter season. On the other hand, in spring season, both SST and chl-a images are available to differentiate the oceanic water intrusion. Therefore, applying the suitable satellite sensor images for each season is effective in the monitoring of oceanic water intrusion. Moreover, in this area, SST and chl-a distribution reveal not only the oceanic water intrusion into Kagoshima bay but also the intrusion at Fukiage seashore facing East China Sea.

  • PDF

Climatological Variability of Satellite-derived Sea Surface Temperature and Chlorophyll in the South Sea of Korea and East China Sea (남해와 동중국해에서 위성으로 추정된 표층수온 및 클로로필의 장기 변화)

  • Son, Young-Baek;Ryu, Joo-Hyung;Noh, Jae-Hoon;Ju, Se-Jong;Kim, Sang-Hyun
    • Ocean and Polar Research
    • /
    • v.34 no.2
    • /
    • pp.201-218
    • /
    • 2012
  • The purpose of this study is to investigate climatological variations from the sea surface temperature (SST), chlorophyll-a concentration (Chl-a), and phytoplankton size class (PSC), using NOAA AVHRR, SeaWiFS, and MODIS data in the South Sea of Korea (SSK) and East China Sea (ECS). 26-year monthly SST and 13-year monthly Chl-a and PSC data, separated by whole and nine-different areas, were used to understand seasonal and inter-annual variations. SST and Chl-a clearly showed seasonal variations: higher SST and Chl-a were observed during the summer and spring, and lower values occurred during the winter and summer. The annual and monthly SST over 26 years increased by $0.2{\sim}1.0^{\circ}C$. The annual and monthly Chl-a concentration over 13 years decreased by $0.2{\sim}1.1mg/m^3$. To determine more detailed spatial and temporal variations, we used the combined data with monthly SST, Chl-a, and PSC. Between 1998 and 2010, the inter-annual trend of Chl-a decreased, with decreasing micro- and nano-size plankton, and increasing pico-size plankton. In regional analysis, the west region of the study area was spatially and temporally correlated with the area dominated by decreasing micro-size plankton; while the east region was less sensitive to coastal and land effects, and was dominated by increasing pico-size plankton. This phenomenon is better related to one or more forcing factors: the increased stratification of ocean driven by changes occurring in spatial variations of the SST caused limited contributions of nutrients and changed marine ecosystems in the study area.