• 제목/요약/키워드: CHEMICAL FACTORY

Search Result 144, Processing Time 0.029 seconds

Initial Risk Assessment of Acetanilide in OECD High Production Volume Chemical Program

  • Park, Hye-Youn;Park, Yoonho;Sanghwan Song;Kwon, Min-Jeoung;Koo, Hyun-Ju;Jeon, Seong-Hwan;Na, Jin-Gyun;Park, Kwangsik
    • Toxicological Research
    • /
    • v.18 no.1
    • /
    • pp.13-22
    • /
    • 2002
  • In Korea, 2,320 tonnes of acetanilide were mostly wed as intermediates for synthesis in phar-maceuticals or additives in synthesizing hydrogen peroxide, varnishes, polymers and rubber. Only small amount of 120 kg were wed as a stabilizer for hydrogen peroxide solution for hair colouring agents in 1998. Readily available environmental or human exposure data do not exist in Korea at the present time. However, potential human exposures from drinking water, food, ambient water and in work places are expected to be negligible because this chemical is produced in the closed system in only one company in Korea and the processing factory is equipped with local ventilation and air filtering system. Acetanilide could be distributed mainly to water based on EQC model. This substance is readily biodegradable and its bioaccumulation is low. Acute toxicity of acetanilide is low since the L $D_{50}$ of oral exposure in rats is 1,959 mg/kg bw. The chemical is not irritating to skin, but slightly irritating to the eyes of rabbits. horn repeated dose toxicity, the adverse effects in rats were red pulp hyperplasia of spleen, bone marrow hyperplasia of femur and decreased hemoglobin, hematocrit and mean corpuscular hemoglobin concentration. The LOAEL for repeated dose toxicity in rats was 22 mg/kg/day for both sexes. Acetanilide is not considered to be genotoxic. In a reproductive/developmental toxicity study, no treatment-related changes in precoital time and rate of copulation, impregnation, pregnancy were shown in all treated groups. The NOAELs for reproduction and developmental toxicity (off-spring toxicity) are considered to be 200 mg/kg bw/day and 67 mg/kg bw/day, respectively. Ecotoxicity data has been generated in a limited number of aquatic species of algae (72 hr- $E_{b}$ $C_{50}$; 13.5 mg/l), daphnid (48hr-E $C_{50}$ > 100 mg/l) and fish (Oryzias latipes, 96hr-L $C_{50}$; 100 mg/l). Form the acute toxicity values, the predicted no effect concentration (PNEC) of 0.135 mg/1 was derived win an assessment factor of 100. On the basis of these data, acetanilide was suggested as currently of low priority for further post-SIDS work in OECD.in OECD.D.

Development of a COD(Chemical Oxygen Demand) Sensor Using an Electrode-surface Grinding Unit (전극표면 연마 유니트를 이용한 전기화학적 COD측정용 센서의 개발)

  • Yoon, Seok-Min;Choi, Chang-Ho;Park, Byung-Sun;Jin, Gil-Joo;Jeong, Bong-Geun;Hyun, Moon-Sik;Park, Jong-Man;Lee, Seung-Sun;Yi, Dong-Heui;Kim, Hyung-Joo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.4
    • /
    • pp.453-458
    • /
    • 2006
  • An electrochemical COD(Chemical Oxygen Demand) sensor using an electrode-surface finding unit has been constructed. The electrolyzing(oxidizing) action of copper on the organic species was used as the basis of the COD measuring sensor. Using a simple three electrode cell, organic species which has been activated by the catalytic action of copper is oxidized at a working electrode, poised at a positive potential. A novel modification of the above method allowed for extended use of the electrode, in which the action of the electrode is regenerated by an electrode-surface grinding unit. When samples obtained from a wastewater treatment factory were measured, a linear correlation($r^2=0.93$) between the measured value(EOD) and $COD_{Mn}$ of the samples was observed. Overall results indicated that the electrochemical sensor with grinding unit could be applied for continuous measurements of COD in practical fields.

Exposure to Volatile Organic Compounds and Possibility of Exposure to By-product Volatile Organic Compounds in Photolithography Processes in Semiconductor Manufacturing Factories

  • Park, Seung-Hyun;Shin, Jung-Ah;Park, Hyun-Hee;Yi, Gwang-Yong;Chung, Kwang-Jae;Park, Hae-Dong;Kim, Kab-Bae;Lee, In-Seop
    • Safety and Health at Work
    • /
    • v.2 no.3
    • /
    • pp.210-217
    • /
    • 2011
  • Objectives: The purpose of this study was to measure the concentration of volatile organic compound (VOC)s originated from the chemicals used and/or derived from the original parental chemicals in the photolithography processes of semiconductor manufacturing factories. Methods: A total of four photolithography processes in 4 Fabs at three different semiconductor manufacturing factories in Korea were selected for this study. This study investigated the types of chemicals used and generated during the photolithography process of each Fab, and the concentration levels of VOCs for each Fab. Results: A variety of organic compounds such as ketone, alcohol, and acetate compounds as well as aromatic compounds were used as solvents and developing agents in the processes. Also, the generation of by-products, such as toluene and phenol, was identified through a thermal decomposition experiment performed on a photoresist. The VOC concentration levels in the processes were lower than 5% of the threshold limit value (TLV)s. However, the air contaminated with chemical substances generated during the processes was re-circulated through the ventilation system, thereby affecting the airborne VOC concentrations in the photolithography processes. Conclusion: Tens of organic compounds were being used in the photolithography processes, though the types of chemical used varied with the factory. Also, by-products, such as aromatic compounds, could be generated during photoresist patterning by exposure to light. Although the airborne VOC concentrations resulting from the processes were lower than 5% of the TLVs, employees still could be exposed directly or indirectly to various types of VOCs.

Effect of Super Absorbent Polymer on Germination and Growth of Safflower and Amaranth Sprouts (고흡수성 합성고분자가 홍화 및 아마란스 새싹의 발아 및 생육에 미치는 영향)

  • Jang, Seong-Nam;Lee, Ga-Oun;Lee, Seung-man;Yun, Jae Gil;Shin, Hyunsuk;Son, Ki-Ho
    • Journal of Bio-Environment Control
    • /
    • v.30 no.1
    • /
    • pp.37-45
    • /
    • 2021
  • This study was conducted to evaluate the growth characteristics, phenolic concentration and antioxidant capacity of safflower (Carthamus tinctorius L.) and amaranth (Amaranthus spp.) sprout and investigate the possibility of using super absorbent polymer (SAP) as a medium in hydroponic cultivation in a plant factory. The control was used a commercial sprout cultivation tool (19 × 14 × 9 cm, W × D × L), and a treatment (SAP) was added on the cultivation tool to compare the effect of SAP. Safflower sprouts were immersed in a distilled water at 30 ℃ for 5 hours, and then grown in a plant growth chamber. The temperature and relative humidity were maintained at 25 ± 1℃ and 70 ± 4%, respectively. The light condition was maintained at 35 ± 6 μmol·m-2·s-1 (12h). Amaranth sprouts were grown in a plant growth chamber maintained with temperature of 25 ± 2℃, relative humidity of 70 ± 5% and light condition of 188 ± 10 μmol·m-2·s-1 (16h). A physical and chemical characteristic of SAP, and a germination rate, growth characteristics and secondary metabolites were analyzed in both safflower and amaranth. There was no significant effect on SAP in a germination rate, growth and secondary metabolites of safflower compared to the control, whereas amaranth grown under SAP was higher in germination rate, dry weight, phenolic concentration, and antioxidant capacity compared to the control. As a result, this study was suggested that cultivation of sprouts using SAP would be possible in a plant factory, and further studies on SAP on plant physiological response are required.

Correlating the hydraulic conductivities of GCLs with some properties of bentonites

  • Oren, A. Hakan;Aksoy, Yeliz Yukselen;Onal, Okan;Demirkiran, Havva
    • Geomechanics and Engineering
    • /
    • v.15 no.5
    • /
    • pp.1091-1100
    • /
    • 2018
  • In this study, the relationships between hydraulic conductivity of GCLs and physico-chemical properties of bentonites were assessed. In addition to four factory manufactured GCLs, six artificially prepared GCLs (AP-GCLs) were tested. AP-GCLs were prepared in the laboratory without bonding or stitching. A total of 20 hydraulic conductivity tests were conducted using flexible wall permeameters ten of which were permeated with distilled deionized water (DIW) and the rest were permeated with tap water (TW). The hydraulic conductivity of GCLs and AP-GCLs were between $5.2{\times}10^{-10}cm/s$ and $3.0{\times}10^{-9}cm/s$. The hydraulic conductivities of all GCLs to DIW were very similar to that of GCLs to TW. Then, simple regression analyses were conducted between hydraulic conductivity and physicochemical properties of bentonite. The best correlation coefficient was achieved when hydraulic conductivity was related with clay content (R=0.85). Liquid limit and plasticity index were other independent variables that have good correlation coefficients with hydraulic conductivity (R~0.80). The correlation coefficient with swell index is less than other parameters, but still fairly good (R~0.70). In contrast, hydraulic conductivity had poor correlation coefficients with specific surface area (SSA), smectite content and cation exchange capacity (CEC) (i.e., R < 0.5). Furthermore, some post-test properties of bentonite such as final height and final water content were correlated with the hydraulic conductivity as well. The hydraulic conductivity of GCLs had fairly good correlation coefficients with either final height or final water content. However, those of AP-GCLs had poor correlations with these variables on account of fiber free characteristics.

Effects of Cultivars and Cultural Conditions on the Growth, Quality and Occurence of Tipburn of Butterhead Lettuce during Summer Season (품종과 재배조건이 여름철 양액재배 반결구 상추의 생육, 품질 및 잎끝마름증 발생에 미치는 영향)

  • 유성오;배종향
    • Journal of Bio-Environment Control
    • /
    • v.8 no.2
    • /
    • pp.83-89
    • /
    • 1999
  • Butterhead lettuce was grown hydroponically in a plant factory during summer season. To decrease the occurrence of tipburn and increase productivity, optimum cultivars, substrates, gully slope and height, and the amount of irrigation were evaluated in this experiment. Cultivars ‘Rex’ and ‘Flandria’ showed higher productivity with less tipburn as compared to the others in spite of lower growth rates and appeared to be suitable cultivars during summer season. Cocopeat showed high productivity due to superior physio-chemical characteristics. Appropriate gully slope which makes nutrient solution easy to flow was shown to be 1 to 2%. The amount of irrigation was appropriate at 2$\ell$/gully. Higher growth of the butterhead lettuce observed when the bed was at a lower position. Low bed was thought to be good for lettuce growth with proper humidity and average temperatures.

  • PDF

A Study on the Decompressed Ammonia Stripping from Ammonia Contained Wastewater (폐수의 감압 암모니아 탈기에 관한 연구)

  • 신대윤;오유경
    • Journal of Environmental Health Sciences
    • /
    • v.27 no.1
    • /
    • pp.93-99
    • /
    • 2001
  • This study aims at finding out pertinent reaction conditions for treating high concentration ammonia contained in N-chemical factory wastewater with decompressed ammonia stripping method that was designed. And it also tries to investigate adsorption capability of removed ammonia to soil. The results from experiments are as follows ; 1. The removal rate of N $H_3$-N of synthetic wastewater was under 85% at pH 10 with decompressed ammonia stripping method. The reaction time in pressure 360 mmHg at pH 11 and 12 was shorter than in 460 mmHg, and the removal rate of N $H_3$-N with decompressed ammonia stripping method at 9$0^{\circ}C$ was 11~15% higher than air stripping 2. The optimum conditions for decompressed ammonia stripping with synthetic sample were shown as pH 12, temperature 9$0^{\circ}C$, internal reaction pressure 460 mmHg and reaction time 50 minutes. These conditions were applied to treat the wastewater containing organic-N 290.5mg/$\ell$, N $H_3$-N 168.9mg/$\ell$, N $O_2$-N 23.2mg/$\ell$, N $O_3$-N 252.4mg/$\ell$, T-N 735mg/$\ell$. Organic-N turned out to be removed 60%, the removal rate of N $H_3$-N IS 94%, T-N is 50%. But N $O_2$-N and N $O_3$-N were increased with 7.8% and 14.9% respectively. 3. The CO $D_{Sr}$ removal rate in decompressed ammonia stripping reaction was 42% and S $O_4$$^{2-}$ was removed 8.2%. It was turned out caused with higher pH and thermolysis. 4. In soil adsorption of ammonia desorbed from the decompressed stripping process of wastewater, the recovery rate was 76% in wet soil.

  • PDF

Defining Area of Damage of 2012 Hydrofluoric Acid Spill Accident in Gumi, Korea (구미 불산 누출사고로 인한 주변지역 환경영향권 설정에 관한 연구)

  • Koh, Dohyun;Kim, Jeongsoo;Choi, Kyungho
    • Journal of Environmental Health Sciences
    • /
    • v.40 no.1
    • /
    • pp.27-37
    • /
    • 2014
  • Objectives: On September 27, 2012, leakage of anhydrous hydrofluoric acid occurred in a chemical plant in the Gumi National Industrial Complex. Following the accident, local factory workers and residents complained of abnormal health conditions. In addition, visual discolorations were widely observed in crops and trees in surrounding areas. The main objectives of the present study were to identify the area that was affected by the spill using data obtained from plants, soil, and water samples after the accident. Methods: Fluoride concentrations were analyzed in pine tree needles, soil, nearby streams, ponds and reservoirs collected from an area within a radius of three kilometers from the plant where the leak occurred. Fluoride concentrations in the air at the time of leakage were then estimated from fluoride concentrations that were measured in the pine tree needles. A Kriged map was developed to describe the spatial distribution of hydrofluoric acid at the time of the leakage and was compared with the area designated as a Special Disaster Zone by the government. Results: The Special Disaster Zone did not include all the affected area that was estimated by the Kriged map. Analytical results of the environmental samples also supported this discrepancy. Conclusion: Using plants, atmospheric concentrations of fluoride at the time of the leakage could be estimated. For the area that was identified as affected, further public health risk assessment and environmental risk assessment should be considered. Also, in the absence of air monitoring at the time of leakage, studies employing plants may be conducted in order to better understand the spatial extent and severity of the contamination.

Characteristics of Waste Lime and Soil Mixture for Reusing of Roadbed Embanking Material (도로노반 성토재로의 재활용을 위한 폐석회 혼합토의 특성연구)

  • Hong, Seung-Seo;Kim, Young-Seok;Lee, Yong-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.12
    • /
    • pp.5157-5164
    • /
    • 2010
  • Currently about 3.2 millon tons of waste lime are accumulated and annually 100,000 tons are producted. This study was carried out to investigate the characteristics of soil mixed with waste lime for reusing of roadbed embanking material. Waste lime used in this study is producted as a by-product in the manufacturing process of making $Na_2CO_3$ from local chemical factory in Incheon. In this study, the feasible reuse of waste lime mixed with granite weathered soil, clay, crushed rock was investigated through laboratory tests including specific gravity test, sieve analysis, hydrometer analysis, atterberg limit test, compaction test, unconfined compressive test, CBR test, permeability test, shear test, and abrasion test. The mixing rate is granite weathered soil, clay, crushed rock 80 % respectively and waste lime 20 % by weight. From the test results, it is shown that the waste lime and soil mixtures satisfy the criteria as road embanking material specification.

Removal of Hardness Ions by Crossflow Ceramic Ultrafiltration Process with Adding Lime-soda Ash (석회-소다회를 주입한 십자흐름 세라믹 한외여과공정을 이용한 경도 이온 제거)

  • Park, Jin-Yong;Park, Bo-Reum
    • Membrane Journal
    • /
    • v.17 no.3
    • /
    • pp.191-196
    • /
    • 2007
  • In the study, excess of lime-soda ash(L-S) was added to groundwater for chemical precipitation of hardness ions. After formation of the coagulated flocs, sedimentation step was replaced with crossflow ultrafiltration(UF) process using tubular ceramic membrane. As results, our treated water was below total hardness(TH) 10 mg/L as $CaCO_3$ from groundwater using washing water in a soymilk factory. Then, we investigated the change of permeat flux(J) and dimensionless permeate flux($J/J_0$) during experiments for variations of TMP(Trans-membrane pressure) or flow rate, to see effect of TMP or flow rate on membrane fouling by the coagulated Inorganic flocs. In the result, membrane fouling and rejection rate of total hardness were not affected by TMP and flow rate variations in the range of our experiments.