• Title/Summary/Keyword: CH1

Search Result 3,434, Processing Time 0.025 seconds

OES Analysis for Diamond Film Growth by Vapor Activation Method Using CH3OH/H2O Gas (CH3OH/H2O 가스의 기상활성법을 이용한 다이아몬드 박막성장 과정에서의 OES분석)

  • Lee, Kwon-Jai;Koh, Jae-Gui;Shin, Jae-Soo
    • Korean Journal of Materials Research
    • /
    • v.13 no.1
    • /
    • pp.31-35
    • /
    • 2003
  • The intensity is measured as functions of both distance from filament to substrate and $CH_3$OH/($CH_3$OH+$H_2$O) ratio by OES(Optical Emission Spectroscopy) to investigate the effects of activation species such as $H_{\alpha}$, $H_{\beta}$, H$\Upsilon\;C_3$, CH on diamond film growth.$ H_{\alpha}$ increases as $CH_3$OH composition decreases, while CH increases as $CH_3$OH composition increases. The intensity of $H_{\alpha}$ decreases as the distance increases and that of CH increases as the distance increases. The intensities of other activation species of $H_{\beta}$, H$\Upsilon\;C_3$, do not vary as a function of measured position distance. It varies randomly. It means that various parameters for depositing diamond thin film can be explained by the intensity(density) change of activation species, as a function of the distance of the filament.

A Comparative Study on the Literature of Korean and Chinese Shroud (한국수의와 중국수의와의 문화적 비교연구)

  • 유관순
    • Journal of the Korean Society of Costume
    • /
    • v.34
    • /
    • pp.79-89
    • /
    • 1997
  • Comparison of Korean shroud with Chinese shroud are as follows. 1. Taetae Simeui P'oo Hansam Ko, Mal, Nukpaek, Kwatu, Ch'ungi Po-kkon Myokmok Ri Aksu Mo and Om were used the most inchina. However Mangkon Tapho Tanko Sotae Ri and Kop'o were used more widely in Korea. 2. The cloths of Chinese shroud were p'o, Paek and Kyun but those of the orean were paek Chu Chung and P'o The colors of the chinese and Koean shroud was Hyun Hun and white. 3. The size of the Cinese shroud is as follows. The size of the Ch ungi ws si-milar tothe size of jujube kernel the len-gth of Myokmok was one Ch'ok two Ch'on or one Ch'ok five Ch'on the length of Aksu was one Ch'ok two Ch'on and its width was five Ch'on. The chil of Mo reached the hands and the length of Sw-ae was three Ch'ok and the length of Om ws five Ch'on. the size of the Korean shroud was the same as Chinese shroud except that the size fo Myokmok and the lenth of Chil and Swae was seven Ch'ok respectively,. 4. In Korean and Chinese shroud Aksu was tied by the strings at two corners Myokmok was teid by the strings of four corners. The tip of the Om was divided and Mo wrapped the shole body. 5. The clothes of Soryom was nineteen Ch'ing in Korean and chinese shroud. The clothes of Taeryom in Kun were one hundred Ch'ing in the chinese and ninety Ch'ing in the Korean shroud. The imple-ment of Soryom were Kum Kyo Sangeui Saneui Ch'im Yok and Kyon in the Chinese shroud and were Kum Kyo Sangeui Saneui Ch'im Yok Kyonand Sinmyon in the Korean shroud. In the case of the implement of Taeryom the Chinese shroud had Kum Kyo Sangeui Saneui Ch'im and Yok the same as Korean shroud.

  • PDF

Autothermal Reforming Reaction at Fuel Process Systems of 1Nm3/h (1 Nm3/h급 연료 변환시스템에서 메탄의 자열 개질반응)

  • Koo, Jeong-Boon;Sin, Jang-Sik;Yang, Jeong-Min;Lee, Jong-Dae
    • Korean Chemical Engineering Research
    • /
    • v.50 no.5
    • /
    • pp.802-807
    • /
    • 2012
  • The autothermal reforming of methane to syngas has been carried out in a reactor charged with both a Ni (15 wt%)-Ru (1 wt%)/$Al_2O_3$-MgO metallic monolith catalyst and an electrically-heated convertor (EHC). The standalone type reactor has a start-up time of less than 2 min with the reactant gas of $700^{\circ}C$ fed to the autothermal reactor. The $O_2/CH_4$ and $H_2O/CH_4$ ratio governed the methane conversion and temperature profile of reactor. The reactor temperature increased as the reaction shifted from endothermic to exothermic reaction with decreasing $H_2O/CH_4$ ratio. Also the amount of $CO_2$ in the products increases with increasing $H_2O/CH_4$ ratio due to water gas shift reaction. The 97% of $CH_4$ conversion was obtained and the reactor temperature was maintained $600^{\circ}C$ at the condition of $GHSV=10,000\;h^{-1}$ and feed ratio ($H_2O/CH_4=0.6$ and $O_2/CH_4=0.5$). In this condition, the maximum flow rate of the syngas generated from the reactor charged with 170 cc of the metallic monolith catalyst is $0.94\;Nm^3/h$.

Reaction of the Fe(II) Macrocyclic Complexes with Dioxygen : Preparation of New Unsaturated Ring Systems by Oxidative Dehydrogenation Reactions of Fe(II) Macrocyclic Ligands (이가철 거대고리 리간드의 착화합물과 산소 분자간의 반응 : 이가철 거대고리 리간드 착화합물의 산화성 탈수소 반응에 의한 새로운 불포화 고리계의 합성)

  • Myunghyun Paik;Shin-Geol Kang;Kyu Whan Woo
    • Journal of the Korean Chemical Society
    • /
    • v.28 no.6
    • /
    • pp.384-392
    • /
    • 1984
  • Reaction of the Fe(II) complex of a fully saturated tetradentate macrocyclic ligand [Fe([14]aneN$_4)(CH_3CN)_2]^{2+}$, where [14]ane$N_4$ represents 1,4,8,11-tetraazacyclotetradecane, with $O_2$ has been investigated in acetonitrile solutions. [Fe([14]aneN$_4)(CH_3CN)_2]^{2+}$ reacts with oxygen to yield low spin Fe(III) species, [Fe([14]aneN$_4)(CH_3CN)_2]^{3+}$, which undergoes metal ion assisted oxidative dehydrogenation of the macrocyclic ligand to produce low spin Fe(II) complex, [Fe([14]tetraeneN$_4)(CH_3CN)_2]^{2+}$. The macrocyclic ligand in [Fe([14]tetraeneN$_4)(CH_3CN)_2]^{2+}$ is highly unsaturated and its double bonds are conjugated. [Fe([14]dieneN$_4)(CH_3CN)_2]^{2+}$ and [Fe([14]dieneN$_4)(CH_3CN)_2]^{3+}$ are isolated as the intermediates of the reaction. The Fe(II) complexes involved in this oxidative dehydrogenation reaction react with carbon monoxide to give respective carbon monoxide derivatives, [FeL$(CH_3CN)(CO)]^{2+}$ (where L = macrocyclic ligand). The values of $v_{CO}$ of [FeL$(CH_3CN)(CO)]^{2+}$, and the electrochemical oxidation potentials of Fe(II) ${\to}$ Fe(III) and the qualitative stability toward air-oxidation for [FeL(CH$_3CN_2)^{2+}$ increase as the degree of unsaturation of the macrocyclic ligands increase.

  • PDF

$H_2S$ Adsorption Characteristics and Property Analyses of Activated Carbon Adsorbent Impregnated with Basic Solutions (염기성용액으로 첨착시킨 활성탄의 물성분석 및 $H_2S$ 흡착특성)

  • Lee, Suk-Ki;Yim, Chang-Sun;Park, Yeong-Seong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.11
    • /
    • pp.1011-1016
    • /
    • 2010
  • The $H_2S$ adsorption characteristics and property analyses of granular activated carbon adsorbent impregnated with basic solution such as NaOH, KOH, and $(CH_2CH_2OH)_2NH$ were investigated. The concentrations of NaOH and KOH reagent ranged over 1 to 5 M, The concentration of $(CH_2CH_2OH)_2NH$ was in the range of 0.1 to 1 M. Adsorption temperature($25{\sim}45^{\circ}C$) and adsorbate ($H_2S$) concentration (18.23 mg/L) were applied. The experimental results showed that the BET surface area of activated carbon impregnated with KOH decreases from $1,050\;m^2/g$ to $750\;m^2/g$, and the acidity of activated carbon impregnated with NaOH decreases from 0.541 meq/g-AC to 0 meq/g-AC, as the concentration of basic solution increases, while the pH of impregnated activated carbon increased from 9.54 to 10.94 for three basic solutions. It was also found that the $H_2S$ adsorption equilibrium capacity of activated carbon impregnated with NaOH, KOH, $(CH_2CH_2OH)_2NH$ increased with increasing temperature and $H_2S$ adsorption equilibrium capacity of the activated carbon impregnated with diethanolamine was much higher than other cases. At adsorption temperature of $45^{\circ}C$, the $H_2S$ adsorption equilibrium capacity of impregnated activated carbon was 2.0~3.3 times lager than that of pure activated carbon.

Field Application of Biocovers in Landfills for Methane Mitigation (매립지 메탄 저감을 위한 바이오커버의 현장 적용 평가)

  • Jung, Hyekyeng;Yun, Jeonghee;Oh, Kyung Cheol;Jeon, Jun-Min;Ryu, Hee-Wook;Cho, Kyung-Suk
    • Microbiology and Biotechnology Letters
    • /
    • v.45 no.4
    • /
    • pp.322-329
    • /
    • 2017
  • Two pilot-scale biocovers (PBCs) were installed in a landfill, and the methane ($CH_4$) concentrations at their inlets and outlets were monitored for 240 days to evaluate the methane removability. Consequently, the packing materials were sampled from the PBCs, and their potential $CH_4$ oxidizing abilities were evaluated in serum vials. The $CH_4$ concentration at the inlet of the biocovers was observed to be in the range of 23.7-47.9% (average = 41.3%, median = 42.6%). In PBC1, where a mixture of soil, earthworm cast, and compost (7:2:1, v/v) was employed as the packing material, the $CH_4$ removal efficiency was evaluated to be between 60.7-85.5%. In PBC2, which was filled with a mixture of soil, earthworm cast, perlite, and compost (4:2:3:1, v/v), the removal efficiency was evaluated to be between 29.2-78.5%. Although the packing materials had an excellent $CH_4$ oxidizing potential (average oxidation rate for $CH_4=180-199{\mu}g\;CH_4{\cdot}g\;packing\;material^{-1}{\cdot}h^{-1}$), $CH_4$ removal efficiency in PBC1 and PBC2 decreased to the range of 0-30% once the packing materials in the PBCs were clogged and channeled. Furthermore, seasonal effects exhibited no significant differences in the $CH_4$ removal efficiency of the biocovers. The results of this study can be used to design and operate real-scale biocovers in landfills to mitigate $CH_4$ buildup.

Ameliorating Effects of Cheongnoemyeongsin-hwan on Learning and Memory Impairment Induced by Cerebral Hypoperfusion in Rats (청뇌명신환(淸腦明神丸)이 뇌혈류저하 흰쥐의 학습 및 기억 장애 개선에 미치는 영향)

  • Chang, Suk Hee;Hwang, Won Deuk
    • Herbal Formula Science
    • /
    • v.25 no.1
    • /
    • pp.69-87
    • /
    • 2017
  • Objectives : Cheongnoemyeongsin-hwan (CNMSH) is a herb medicine to treat cognitive impairment. This study was investigated the effects of CNMSH on learning and memory impairment induced by cerebral hypoperfusion. Cerebral hypoperfusion was produced chronically by permanent bilateral common carotid artery occlusion (BCCAO) in rats. Methods : CNMSH was administered orally once a day (250 mg/kg) for 28 days starting at 4th week after the BCCAO. The acquisition of learning and the retention of memory were tested on 9th week after the BCCAO using the Morris water maze. In addition, effect of CNMSH on neuronal apoptosis and ${\beta}-amyloid$ accumulation in the hippocmapus was evaluated with immunohistochemistry and Western blotting. Results : 1. CNMSH and ChAL significantly shortened the escape latencies on the 2nd day of acquisition training trials. 2. ChAL significantly prolonged the swimming time spent in the target and peri-target zones and CNMSH also significantly prolonged the swimming time spent in the peri-target zone. 3. CNMSH and ChAL significantly increased the number of target heading in the retention test. 4. ChAL significantly shortened the time of the 1st target heading in the retention test, but CNMSH insignificantly shortened the time of that. 5. CNMSH and ChAL significantly increased the memory score in the retention test. 6. CNMSH and ChAL significantly attenuated the reduction of CA1 neurons, but insignificantly attenuated the reduction of CA1 thickness. 7. CNMSH and ChAL significantly attenuated the up-regulation of Bax expression in the CA1 of hippocampus. 8. CNMSH and ChAL significantly attenuated the up-regulation of cascapse-3 expression in the CA1 of hippocampus. 9. CNMSH and ChAL significantly attenuated the ${\beta}-amyloid$ accumulation in the CA1 of hippocampus. 10. CNMSH and ChAL significantly attenuated the up-regulation of APP expression in the CA1 of hippocampus. 11. CNMSH and ChAL significantly attenuated the up-regulation of BACE-1 expression in the CA1 of hippocampus. Conclusions : The results show that CNMSH attenuates neuronal apoptosis and ${\beta}-amyloid$ accumulation in the hippocampus and alleviates the impairment of learning and memory produced by chronic cerebral hypoperfusion. These results suggest that CNMSH may be a beneficial medicinal herb to treat cognitive impairment associated with neurodegenerative diseases.

Density Functional Studies of Ring-Opening Reactions of Li+-(ethylene carbonate) and Li+-(vinylene carbonate)

  • Han, Young-Kyu;Lee, Sang-Uck
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.1
    • /
    • pp.43-46
    • /
    • 2005
  • Reaction energies were determined for reductive ring-opening reactions of Li$^+$-coordinated ethylene carbonate (EC) and vinylene carbonate (VC) by a density functional method. We have also explored the ring-opening of Li$^+$-EC and Li$^+$-VC by reaction with a nucleophile (CH$_3$O$^-$.) thermodynamically. Our thermodynamic calculations led us to conclude that the possible reaction products are CH$_3$OCH$_2$CH$_2$OCO$_2$Li (O$_2$-C$_3$ cleavage) for Li$^+$-EC +CH$_3$O$^-$., and CH$_3$OCHCHOCO$_2$Li (O$_2$-C$_3$ cleavage) and CH$_3$OCO$_2$CHCHOLi (C$_1$-O$_2$ cleavage) for Li$^+$-VC +CH$_3$O$^-$.. The opening of VC would occur at the C$_1$-O$_2$ side by a kinetic reason, although the opening at the O$_2$-C$_3$ side is more favorable thermodynamically.

The Influence of Strain Rates on the $CH_4/C_2HCl_3/Air$ Counterflow Nonpremixed Flames ($CH_4/C_2HCl_3/Air$ 대향류 비예혼합 화염에서 스트레인율의 영향)

  • Lee, Ki-Yong
    • Journal of the Korean Society of Combustion
    • /
    • v.5 no.1
    • /
    • pp.7-18
    • /
    • 2000
  • Numerical simulations of counterflow non-premixed $CH_4/C_2HCl_3/Air$ flames added 8%(by volume) C2HCl3 on the fuel side are conducted at atmospheric pressure using a detailed chemical reaction mechanism in order to understand the effect of strain rates. A detailed sensitivity analysis is also performed in order to assess the relative influence of each reaction on the flame established at a strain rate of 200s-1. The structure of flames (i.e., temperature, velocity, and concentration of species) established at both a strain rate of 150s-1 and 300s-1 are investigated. As the strain rate increases, the "flame zone" is restricted to a narrower range and the position of maximum temperature is shifted to the fuel side. The concentrations of major species, H2O, CO, H2, HCl, Cl2, and Cl are decreased with increased strain rate. The reaction involving chlorine, CH4 + Cl $\rightarrow$ CH3 + HCl, instead of the reaction, CH4 + H $\rightarrow$ CH3 + H2 influences the consumption of methane. C2HCl3 + OH $\rightarrow$ CHCl2 + CHOCl and HCl + OH $\rightarrow$ H2O + Cl, are major reactions, through which OH radicals are consumed.

  • PDF

Reaction between CH₃and H₂at Conbustion Temperatures

  • 백현주;신관수;Yang, H.;V. Lissianski;W. C. Gardiner, Jr.
    • Bulletin of the Korean Chemical Society
    • /
    • v.16 no.6
    • /
    • pp.543-546
    • /
    • 1995
  • The reaction between CH3 radicals and H2 was investigated behind incident shock waves at temperatures between 1308 and 1825 K by following the consumption of CH3 using a time resolved UV absorption method at 213.9 nm. The rate coefficient expression 1.10 X 1013 exp(-7370 K/T) cm3mol-1s-1 for the reaction of CH3 with H2 was derived.