• 제목/요약/키워드: CFs

검색결과 342건 처리시간 0.019초

탄소섬유쉬트의 보강량 및 정착길이가 RC보의 휨거동에 미치는 영향 (Effect of Strengthening amount and length of CFS on Flexural Behavior of RC Beams)

  • 신성우;반병렬;안종문;조인철
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제2권2호
    • /
    • pp.195-201
    • /
    • 1998
  • The purpose of this study is to evaluate the flexural strengthening effects of RC beams reinforced with carbon fiber sheets (CFS) in variable of strengthening amount and anchorage length of CFS. This study can be summarized as follows ; The CFS shares the tensile stress such as rebar during loading test. Also, as the strengthening amount of CFS is increased, the maximum flexural strength of RC beams reinforced with CFS is increased. Therefore, it is confirmed that the CFS's strengthening method is very effective to improve the flexural strength of RC beams. The maximum flexural strength of RC beams with CFS is determined by bond failure between CFS and concrete surface. So, the evaluation of CFS's strengthening effect can be calculated using the tensile stress of CFS which is peeling. When the anchorage length of CFS is increased, the ductility of RC beams is increased because of delaying the peeling of CFS. But, in case of same anchorage length of CFS, when the strengthening amount of CFS is increased, the ductility is decreased. Therefore, it is considered that the anchorage of CFS in the end zone is necessary.

  • PDF

탄소섬유쉬트의 보강량 및 정착길이가 RC보의 휨거동에 미치는 영향 (Effect of Strengthening amount and length of CFS on Flexural Behavior of RC Beams)

  • 신성우;반병렬;안종문;조인철;김영수;조삼재
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1998년도 봄 학술발표회논문집(II)
    • /
    • pp.579-584
    • /
    • 1998
  • The purpose of this study is to evaluate the flexural strengthening effects of RC beams reinforced with carbon fiber sheets (CFS) in variable of strengthening amount and anchorage length of CFS. This study can be summarized as follows. The CFS shares the tensile stress such as rebar during loading test. Also, as the strengthening amount of CFS is increased, the maximum flexural strength of RC beams reinforced with CFS is increased. Therefore, it is confirmed that the CFS's strengthening method is very effective to improve the flexural strength of RC beams. The maximum flexural strength of RC beams with CFS is determined by bond failure between CFS and concrete surface. So, the evaluation of CFS's strengthening effect can be calculated using the tensile stress of CFS which is peeling. When the anchorage length of CFS. But, in case of same anchorage length of CFS, when the strengthening amount of CFA is increased, the ductility is decreased. Therefore, it is considered that the anchorage of CFS in the end zone is necessary.

  • PDF

Shear behaviour of thin-walled composite cold-formed steel/PE-ECC beams

  • Ahmed M. Sheta;Xing Ma;Yan Zhuge;Mohamed A. ElGawady;Julie E. Mills;El-Sayed Abd-Elaal
    • Steel and Composite Structures
    • /
    • 제46권1호
    • /
    • pp.75-92
    • /
    • 2023
  • The novel composite cold-formed steel (CFS)/engineered cementitious composites (ECC) beams have been recently presented. The new composite section exhibited superior structural performance as a flexural member, benefiting from the lightweight thin-walled CFS sections with improved buckling and torsional properties due to the restraints provided by thinlayered ECC. This paper investigated the shear performance of the new composite CFS/ECC section. Twenty-eight simply supported beams, with a shear span-to-depth ratio of 1.0, were assembled back-to-back and tested under a 3-point loading scheme. Bare CFS, composite CFS/ECC utilising ECC with Polyethylene fibres (PE-ECC), composite CFS/MOR, and CFS/HSC utilising high-strength mortar (MOR) and high-strength concrete (HSC) as replacements for PE-ECC were compared. Different failure modes were observed in tests: shear buckling modes in bare CFS sections, contact shear buckling modes in composite CFS/MOR and CFS/HSC sections, and shear yielding or block shear rupture in composite CFS/ECC sections. As a result, composite CFS/ECC sections showed up to 96.0% improvement in shear capacities over bare CFS, 28.0% improvement over composite CFS/MOR and 13.0% over composite CFS/HSC sections, although MOR and HSC were with higher compressive strength than PE-ECC. Finally, shear strength prediction formulae are proposed for the new composite sections after considering the contributions from the CFS and ECC components.

주파수영역 탄성파모델링에 대한 CFS-PML경계조건의 적용 및 개선 (Application and Improvement of Complex Frequency Shifted Perfectly Matched Layers for Elastic Wave Modeling in the Frequency-domain)

  • 손민경;조창수
    • 지구물리와물리탐사
    • /
    • 제15권3호
    • /
    • pp.121-128
    • /
    • 2012
  • 탄성파의 수치 모델링은 유한한 경계에서 발생하는 인공적인 반사파의 제거를 위한 경계조건을 필요로 한다. 이 연구에서는 주파수영역의 탄성파 수치 모델링에 CFS-PML (Complex Frequency Shifted-Perfectly Matched Layer) 경계조건을 적용하였다. 수치모델링 검증을 위해 Lamb's Problem의 해석해와 수치모델링 결과를 비교한 결과 일치하였다. 모형 내의 운동에너지, 최대크기오차, 그리고 스펙트럼오차를 통하여 CFS-PML경계조건이 기존의 흡수경계조건들 보다 유한경계에서 발생한 인공적인 반사파를 효과적으로 제거할 수 있음을 확인하였다. CFS-PML경계조건의 변수 ${\kappa}_{max}$${\alpha}_{max}$의 최적값은 운동에너지를 이용하여 산정할 수 있었다. 또한, 주파수에 따른 함수로 정의된 ${\alpha}_{max}$를 변수로 갖는 변형된 CFS-PML경계조건을 제안하여 기존 PML경계조건, CFS-PML경계조건, 그리고 변형된 CFS-PML경계조건의 성능을 운동에너지, 최대크기오차, 스펙트럼 오차로 비교하였다. 기존 PML경계조건에서 나타난 스쳐가는 입사각에 대한 반사파 문제가 CFS-PML경계조건, 그리고 변형된 CFS-PML경계조건에서는 개선되었다.

CFS 보강 중 주기하중을 받은 RC보의 거동 (Behavior of RC Beam subjected to Cyclic Load during CFS Strengthening)

  • 조일래;장희석;이홍주;김희성
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2004년도 추계 학술발표회 제16권2호
    • /
    • pp.481-484
    • /
    • 2004
  • This study was performed to analyze effect of cyclic load during CFS curing on the behavior of RC beam strengthened with CFS. In the experiment, five different beginning times of cyclic load and two different strengthening amounts of CFS were chosen for experiment parameters. From the experimental results, it could be known that the cyclic load during CFS curing might give detrimental effects to the CFS strengthening effects compared to without cyclic load cases.

  • PDF

CFS 보강 콘크리트 기둥의 보강효과 산정을 위한 해석적 연구 (Numerical Study for the Estimation of Strengthening Effect of Concrete Column Strengthened with CFS)

  • 이상호;허원석;박재우
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1999년도 봄 학술발표회 논문집(I)
    • /
    • pp.709-714
    • /
    • 1999
  • The objectives of this study are to estimate the strengthening effect of concrete column strengthened with CFS and to provide basic guideline for the strengthening design with laminated composite materials. Analysis stress-strain model of laminated CFS is presented based on laminate theory. This model has been implemented in the algorithm of evaluating confinement effect of CFS. From results of the algorithm, stress-strain relationship of confined concrete is obtained. Using this stress-strain relationship, section analyses of circular and rectangular concrete columns strengthened with CFS are carried our, and load-moment interaction and load-ductility curves of the columns are obtained. To evaluate the strengthening effects of CFS, parametric study is also conducted for the angle of ply, thickness of CFS, shape of section, and reinforcement ratio. Based on this investigation, design recommendations and basic guidelines for the strengthening design with CFS are proposed.

  • PDF

탄소섬유 보강공법의 조기 탈락 방지 공법 개발 연구 (Development of New Strengthening Methods Preventing Early Delamination Failure of CFS)

  • 한만엽;백승덕
    • 콘크리트학회논문집
    • /
    • 제12권1호
    • /
    • pp.61-67
    • /
    • 2000
  • The strengthening method with CFS(Carbon Fiber Sheet) has some fatal defects that the beams strengthened with CFS is always failed far below its ultimated strenth due to rapid progress of horizontal delamination. The crack between beam and CFS are always started from the center of the beam and propagated to the end of the beam. The moment of the beam is always the largest in the middle of the beam, so is the tensile force of the CFS. The bumped surface of the CFS causes debonding force depending on the tensile force of CFS. In this study, two methods which delay early delamination are suggested and proved its validity, experimentally. The first method is using anchor bolt at the end of CFS, and the second method is using CFS wrap aroud at the center and the end of beam. The maximum load and ductility of the two methods are increased significantly. However, the maximum load is still far below the ultimate load. That's because the tensile strength of CFS is so large that its tensile strength can not be reached under normal loading condition. The ductility of the strengthened beam is improved more that twice before modiffication.

Method and mechanism of dispersing agent free dispersion of short carbon fibers in silicon carbide powder

  • Raunija, Thakur Sudesh Kumar;Mathew, Mariamma;Sharma, Sharad Chandra
    • Carbon letters
    • /
    • 제15권3호
    • /
    • pp.180-186
    • /
    • 2014
  • This study highlights a novel method and mechanism for the rapid and effective milling of carbon fibers (CFs) in silicon carbide (SiC) powder, and also the dispersion of CFs in SiC powder. The composite powders were prepared by chopping and exfoliation of CFs, and ball milling of CFs and SiC powder in isopropyl alcohol. A wide range of CFs loading, from 10 to 50 vol%, was studied. The milling of CFs and SiC powder was checked by measuring the average particle size of the composite powders. The dispersivity of CFs in SiC powder was checked through scanning electron microscope. The results show that the usage of exfoliated CF tows resulted in a rapid and effective milling of CFs and SiC powder. The results further show an excellent dispersion of CFs in SiC powder for all CFs loading without any dispersing agent.

탄소섬유시트로 보강된 철근콘크리트 보의 연성거동에 관한 실험적 고찰 (Experimental Study on the Ductile Behavior of Reinforced Concrete Beams with Carbon Fiber Sheets)

  • 박현정;박성수
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제5권3호
    • /
    • pp.181-189
    • /
    • 2001
  • Recently, the need for strengthening reinforced concrete(R.C.) structure has been increased, particularly when there is an increase in load requirements, a change in use, a degradation problem, or design/construction defects. The use of composite materials for structural repair presents several advantages and has been investigated all over the world. It is well known that the incorporation of carbon fiber sheet(CFS) with concrete is one of the most effective ways to strengthen the R.C. structure. In this papers, experimentally investigated the ductile behavior of the R.C. beams strengthened with CFS, and provided the basic data for design of R.C. beams strengthened with CFS. Tests were carried out with 15 beams ($20cm{\times}30cm{\times}240cm$) reinforced with CFS, and with parameters including and the ratio of tensile reinforcement to that of balanced condition and number of CFS. The results show that strengthened and non-strengthened beams exhibit different ductile behovior. Non-strengthened beams showed increase of ductility as amount of the tensile reinforcement decreased. However, bearing capacity of the CFS-strengthened beams are dictated by the strength of the CFS layers that a very high ductility is indicated for the beams with large number of CFS.

  • PDF

탄소섬유쉬트의 재료 역학적 특성에 관한 연구 (Study on the mechanical Properties of Carbon Fiber Sheet)

  • 이한승
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1998년도 가을 학술발표대회 논문집(III)
    • /
    • pp.803-808
    • /
    • 1998
  • As carbon fiber is a light-weight materials, high tensile strength and durability compared with rebar, the retrofitting method for RC structures using carbon fiber sheet (CFS) must be use widely. In this paper, the tensile strength test for carbon fiber sheet variable of CF's weight and elastic modulus to evaluate the design tensile strength of carbon fiber sheet which is needed for the strengthening design of CFS and the calculation of strengthening effect. As a result, the design tensile strength of CFS can be calculate using the effect coefficient of strengthening(α) of CFS, the average tensile strength of CFS and the standard deviation of CFS(equation 5)

  • PDF