• Title/Summary/Keyword: CFX program

Search Result 52, Processing Time 0.02 seconds

Study on Analysis of Buoyancy Effect in Air-heating Collector using Solar Heat (태양열을 이용한 공기가열 집열기의 부력효과 해석 연구)

  • Yang, Young-Joon
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.24 no.4_2
    • /
    • pp.467-474
    • /
    • 2021
  • The renewable energy is known as eco-friendly energy to reduce the use of fossil fuel and decrease the environmental pollution due to exhaust gas. Targets of solar collector in domestic are usually acquisitions of hot water and hot air. System of air-heating collector is one of the technologies for obtaining hot air in cases of especially heating room and drying agricultural product. The purpose of this study is to investigate the characteristics of thermal flow such as relative pressure, velocity, outlet temperature and buoyancy effect in air-heating collector using solar heat. The flow field of air-heating collector was simulated using ANSYS-CFX program and the behaviour of hot air was evaluated with SST turbulence model. As the results, The streamline in air-heating collector showed several circular shapes in case of condition of buoyancy. Temperature difference in cross section of outlet of air-heating collector did not almost show in cases of buoyancy and small inlet velocity. Furthermore merit of air-heating collector was not observed in cases of inlet velocities. Even though it was useful to select condition of buoyancy for obtaining high temperature, however, it was confirmed that the trade off between high temperature of room and rapid injection of hot air to room could be needed through this numerical analysis.

Analysis on Characteristics of Thermal Flow for Heating Indoor Space by Air-heating Collector using Solar Heat (태양열 공기가열 집열기에 의한 난방 실내공간의 열유동 특성 해석)

  • Yang, Young-Joon
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.2_2
    • /
    • pp.271-278
    • /
    • 2022
  • The solar energy has been widely used to reduce the fossil fuel and prevent the environmental pollution. The renewable energy including solar heat tends to spread due to carbon neutrality for main country of the world. Targets of solar collector are usually acquisitions of hot water or hot air. Especially, air-heating collector using solar heat is known as the technology for obtaining hot air. This study aims to investigate of characteristics of thermal flow when the hot air by air-heating collector using solar heat flows inside of indoor space. The thermal flow of heating indoor space was simulated using ANSYS-CFX program and thus the behaviors of hot air in indoor space were evaluated with standard k-𝜀 turbulence model. As the results, as the inlet velocity was increased, the behaviors of hot air became simple, and temperature range of 25~75℃ had almost no effect on behavior of flow. As the inlet temperature was increased, the temperature curve of indoor space from bottom to top was changed from linear to quadratic. Furthermore, it was confirmed that inlet velocity as well as inlet temperature also should be considered to heat indoor space equally by air-heating collector using solar heat.

A Study on the Performance Analysis of Degasser System with Vacuum Pump for Onshore and Offshore Drilling (육상 및 해양 시추용 디개서 시스템의 진공펌프 성능해석)

  • Kwon, Seong-Yong;Park, Sung-Gyu;Shin, Chul-Soon;Kim, Seung-Chan;Lim, Hee-Yeon
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.6_2
    • /
    • pp.1063-1069
    • /
    • 2022
  • In modern industry, vacuum has grown into an indispensable industrial field. The performance of the vacuum pump in the degasser system among mud treatment system facilities was verified by a numerical analysis method. The degasser system is an equipment for removing the gas contained in the mud, and it is a work process that requires a vacuum. This study analyzed the vacuum pump performance of the degasser used in drilling for resource development of onshore and offshore plants. The vacuum pump used in the degasser system was designed with a discharge rate of 0.099kg/s. The DM(Design Modeler) program of ansys workbench 17.2 was used to modify the model of the vacuum pump used in the degasser system. And for performance analysis, CFX, which is known to be suitable for rotating system analysis, was used. Finally the performance analysis results of the vacuum pump and the prototype performance test results were compared and analyzed.

CFD Simulation of Methane Combustion for Estimation of Fire and Explosion in Offshore Plant (해양플랜트의 화재 및 폭발 예측을 위한 메탄 연소의 CFD 시뮬레이션)

  • Seok, Jun;Jeong, Se-Min;Park, Jong-Chun;Paik, Jeom-Kee
    • Journal of Ocean Engineering and Technology
    • /
    • v.27 no.2
    • /
    • pp.59-68
    • /
    • 2013
  • Because of the recent increase in maritime cargo capacity, the production and price of crude oil have been rising. As oil prices have risen, many problems have occurred in the industry. To solve these problems, marine resources are being actively developed, and there has been an increase in the orders for special vessels and marine structures for the development of marine resources. However, consequently, various kinds of accidents have also occurred in these special vessels and structures. One of the major types of accidents involves fire and explosion, which cause many casualties and property damage. Therefore, various studies to estimate and prevent such accidents have been carried out. In this study, as basic research for the prevention of fire and explosion, numerical simulations on combustion were carried out by using a commercial grid generation program, Gridgen, and a CFD program, ANSYS-CFX. The influences of some parameters, such as the grid system, turbulence model, turbulent dissipation rate, and so on, on the simulation results were investigated, and optimum ones were chosen. It was found that the present results adopting these parameters agreed moderately well with other experimental and numerical ones.

Thermal Caracteristics of the Automobile Exhaust gas based Heat exchanger with various Exhaust gas Temperature and Mass flow rate (자동차 배기가스 유량 및 온도 변화에 따른 열전발전용 열교환기 발열량 특성에 관한 연구)

  • Kim, Dae-Wan;Ekanayake, Gihan;Lee, Moo-Yeon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.2
    • /
    • pp.15-20
    • /
    • 2018
  • The objective of this study is to numerically investigate the thermal characteristics of an automobile exhaust-based heat exchanger for automotive thermoelectric power generation with various exhaust gas mass flow rates and temperatures. The heat exchanger for automotive thermoelectric power generation has a square-type pin installed inside, so the maximum amount of heat can be transferred to the thermoelectric element from the heat energy coming from the automobile exhaust gas. The exhaust gas mass flow rate changed from 0.01, to 0.02, to 0.03 kg/s, and the exhaust gas temperature changed from 400, to 450, to 500, to 550, to $600^{\circ}C$, respectively. A numerical simulation was conducted by using the commercial program ANSYS CFX v17.0. Consequently, the exhaust gas pressure difference between the inlet and the outlet of the heat exchanger is determined according to the flow rate of the exhaust gas. When the mass flow rate of the exhaust gas increased, the pressure difference between the inlet and the outlet of the heat exchanger increased, but the exhaust gas pressure difference between the inlet of the heat exchanger and the outlet did not vary with the exhaust gas temperature. Therefore, in order to obtain the maximum surface temperature from the heat exchanger, the exhaust gas mass flow rate should be lower, and the exhaust gas temperature should be higher.

Flow analysis of the Sump Pump (흡수정의 유동해석)

  • Jung, Han-Byul;Noh, Seung-Hee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.3
    • /
    • pp.673-680
    • /
    • 2017
  • sump pump is a system that draws in water that is stored in a dam or reservoir. They are used to pump large amounts of water for cooling systems in large power plants, such as thermal and nuclear plants. However, if the flow and sump pump ratio are small, the flow rate increases around the inlet port. This causes a turbulent vortex or swirl flows. The turbulent flow reduces the performance and can cause failure. Various methods have been devised to solve the problem, but a correct solution has not been found for low water level. The most efficient solution is to install an anti-vortex device (AVD) or increase the length of the sump inlet, which makes the flow uniform. This paper presents a computational fluid dynamics (CFD) analysis of the flow characteristics in a sump pump for different sump inlet lengths and AVD types. Modeling was performed in three stages based on the pump intake, sump, and pump. For accurate analysis, the grid was made denser in the intake part, and the grid for the sump pump and AVD were also dense. 1.2-1.5 million grid elements were generated using ANSYS ICEM-CFD 14.5 with a mixture of tetra and prism elements. The analysis was done using the SST turbulence model of ANSYS CFX14.5, a commercial CFD program. The conditions were as follows: H.W.L 6.0 m, L.W.L 3.5, Qmax 4.000 kg/s, Qavg 3.500 kg/s Qmin 2.500 kg/s. The results of analysis by the vertex angle and velocity distribution are as follows. A sump pump with an Ext E-type AVD was accepted at a high water level. However, further studies are needed for a low water level using the Ext E-type AVD as a base.

A Basic Study of the Behavior Characteristics of Diesel Spray and Natural-gas Jet (디젤 분무와 천연 가스 분류의 거동 특성에 관한 기초 연구)

  • Yeom, J.K.;Kim, M.C.
    • Journal of Power System Engineering
    • /
    • v.13 no.6
    • /
    • pp.13-21
    • /
    • 2009
  • This basic study is required to examine spray or jet behavior depending on fuel phase. In this study, analyses of diesel fuel(n-Tridecane, $C_{13}H_{28}$) spray and natural gas fuel(Methane, $CH_4$) jet under high temperature and pressure are performed by a general-purpose program, ANSYS CFX release 11.0, and the results of these are compared with experimental results of diesel fuel spray using the exciplex fluorescence method. The simulation results of diesel spray is analyzed by using the combination of Large-Eddy Simulation(LES) and Lagrangian Particle Tracking(LPT) and of a natural gas jet is analyzed by using Multi-Component Model(MCM). There are two study variables considered, that is, ambient pressure and injection pressure. In a macroscopic analysis, the higher ambient pressure is, the shorter spray or jet tip penetration is at each time after start of injection. And the higher injection pressure is, the longer spray or jet tip penetration is at each time after start of injection. When liquid fuel is injected, droplets of the fuel need some time to evaporate. However, when natural gas fuel is injected, the fuel does not need time to evaporate. Gas fuel consists of minute particles. Therefore, the gas fuel is mixed with the ambient gas more quickly at the initial time of injection than the liquid fuel is done. The experimental results also validate the usefulness of this analysis.

  • PDF

Analysis of the Aluminum Extrusion Process Equipped with the Continuous Heat Treatment System

  • Lee, Bong-Sang;Cho, Young-Hee;Lee, Jeong-Min;Lim, Hak-Jin;Koo, Jar-Myung;Yoon, Bo-Hee;Lee, Tae-Hyuk;Lee, Jong-Hyeon
    • Korean Journal of Materials Research
    • /
    • v.21 no.1
    • /
    • pp.39-45
    • /
    • 2011
  • In this study, the heat flow of the plant scale aluminum extrusion process was investigated to establish optimum continuous heat treatment conditions. During the extrusion of 6061 aluminum alloy, processing parameters such as the extrusion pressure, speed and temperature histories of billets were logged as a function of time. The surface temperature of the billets increased at constant ram speed, while it decreased with decreases of the ram speed. In order to maintain the billet temperature within a solutionizing temperature range prior to the succeeding water quenching step, the ram speed or the temperature of the blower should be controlled. The temperature histories of the billets during the extrusion and hot air blowing processes were successfully simulated by using the velocity boundary model in ANSYS CFX. The methodology to design an optimum process by using a commercial simulation program is described in this study on the basis of the metallurgical validation results of the microstructural observation of the extrudates. The developed model allowed the advantages of taking into account the motion of the extrudate coupled with the temperature change based on empirical data. Calculations were made for the extrudate passing through the isothermal chamber maintained at appropriate temperature. It was confirmed that the continuous heat treatment system is beneficial to the productivity enhancement of the commercial aluminum extrusion industry.

NUMERICAL STUDY ON THE FLOW CHARACTERISTICS OF A HYDRAULIC PISTON PUMP BASED ON THE ANGLE OF THE SWASH-PLATE AND THE DISCHARGE PRESSURE (유압 피스톤펌프의 토출압력 및 사판각도 변화에 따른 유동특성 해석)

  • Yoon, J.H.;Lee, K.;Kang, M.C.
    • Journal of computational fluids engineering
    • /
    • v.21 no.1
    • /
    • pp.50-57
    • /
    • 2016
  • In various industries related with construction and military machinery, a large amount of power is normally required because such machinery operations, such as digging or breaking, take place under difficult working conditions in a rough environment. Thus, a hydraulic system needs to be applied as the major power transfer system. To produce and supply hydraulic power depending on the various load conditions, a hydraulic piston pump is utilized as a typical power source for a hydraulic system. In the present study, numerical simulations were conducted using the commercial program, Ansys CFX 14.5. To lubricate the moving parts as the pump starts to operate, a small amount of oil leaks out through the clearance between the orifice in the piston-shoe and the recess at the swash-plate. Taking this into consideration, a cylindrically shaped computational domain was modeled to maintain the same equivalent leakage area. To validate the numerical method applied herein, the numerical results of the flow rate at the discharge port were compared with the experimental data, and a good agreement between them was shown. Using the verified method, the effects of the discharge pressure and the angle of the swash-plate were also evaluated under several load conditions. The results of the present study can be useful information for a hydraulic piston pump used in many different manufacturing industries.

Dispersion Simulation of Hydrogen in Simple-shaped Offshore Plant (단순 형상 해양플랜트 내의 수소의 분산 시뮬레이션)

  • Seok, Jun;Heo, Jae-Kyung;Park, Jong-Chun
    • Journal of Ocean Engineering and Technology
    • /
    • v.27 no.5
    • /
    • pp.105-114
    • /
    • 2013
  • Lots of orders of special vessels and offshore plants for developing the resources in deepwater have been increased in recent. Because the most of accidents on those structures are caused by fire and explosion, many researchers have been investigated quantitatively to predict the cause and effect of fire and explosion based on both experiments and numerical simulations. The first step of the evaluation procedures leading to fire and explosion is to predict the dispersion of flammable or toxic material, in which the released material mixes with surrounding air and be diluted. In particular turbulent mixing, but density differences due to molecular weight or temperature as well as diffusion will contribute to the mixing. In the present paper, the numerical simulation of hydrogen dispersion inside a simple-shaped offshore structure was performed using a commercial CFD program, ANSYS-CFX. The simulated results for concentration of released hydrogen are compared to those of experiment and other simulation in Jordan et al.(2007). As a result, it is seen that the present simulation results are closer to the experiments than other simulation ones. Also it seems that the hydrogen dispersion is closely related to turbulent mixing and the selection of the turbulence model properly is significantly of importance to the reproduction of dispersion phenomena.