• Title/Summary/Keyword: CFRP strips/sheets

Search Result 13, Processing Time 0.019 seconds

Shear strengthening of reinforced concrete beams with rectangular web openings by FRP Composites

  • Abdel-Kareem, Ahmed H.
    • Advances in concrete construction
    • /
    • v.2 no.4
    • /
    • pp.281-300
    • /
    • 2014
  • This study presents the experimental results of twenty three reinforced concrete beams with rectangular web openings externally strengthened with Fiber Reinforced Polymers (FRP) composites bonded around openings. All tested beams had the same geometry and reinforcement details. At openings locations, the stirrups intercepted the openings were cut during fabrication of reinforcement cage to simulate the condition of inclusion of an opening in an existing beam. Several design parameters are considered including the opening dimensions and location in the shear zone, the wrapping configurations, and the amount and the type of the FRP composites in the vicinity of the openings. The wrapping configurations of FRP included: sheets, strips, U-shape strips, and U-shape strips with bundles of FRP strands placed at the top and sides of the beam forming a fan under the strips to achieve closed wrapping. The effect of these parameters on the failure modes, the ultimate load, and the beam stiffness were investigated. The shear contribution of FRP on the shear capacity of tested beams with web openings was estimated according to ACI Committee 440-08, Canadian Standards S6-06, and Khalifa et al. model and examined against the test results. A modification factor to account for the dimensions of opening chords was applied to the predicted gain in the shear capacity according to ACI 440-08 and CSA S6-06 for bonded Glass Fiber Reinforced Polymers (GFRP) around openings. The analytical results after incorporating the modification factor into the codes guidelines showed good agreement with the test results.

Experimental study on seismic behavior of RC beam-column joints retrofitted using prestressed steel strips

  • Yang, Yong;Chen, Yang;Chen, Zhan;Wang, Niannian;Yu, Yunlong
    • Earthquakes and Structures
    • /
    • v.15 no.5
    • /
    • pp.499-511
    • /
    • 2018
  • This paper aims to investigate the seismic performance of the prestressed steel strips retrofitted RC beam-column joints. Two series of joint specimens were conducted under compression load and reversed cyclic loading through quasi-static tests. Based on the test results, the seismic behavior of the strengthened joints specimens in terms of the failure modes, hysteresis response, bearing capacity, ductility, stiffness degradation, energy dissipation performance and damage level were focused. Moreover, the effects of the amount of the prestressed steel strips and the axial compression ratio on seismic performance of retrofitted specimens were analyzed. It was shown that the prestressed steel strips retrofitting method could significantly improve the seismic behavior of the RC joint because of the large confinement provided by prestressed steel strips in beam-column joints. The decrease of the spacing and the increase of the layer number of the prestressed steel strips could result in a better seismic performance of the retrofitted joint specimens. Moreover, increasing the axial compression ration could enhance the peak load, stiffness and the energy performance of the joint specimens. Furthermore, by comparison with the specimens reinforced with CFRP sheets, the specimens reinforced with prestressed steel strips was slightly better in seismic performance and cost-saving in material and labor. Therefore, this prestressed steel strips retrofitting method is quite helpful to enhance the seismic behavior of the RC beam-column joints with reducing the cost and engineering time.

Experimental Study on Shear Retrofitting of Concrete Columns Using Iron-Based Shape Memory Alloy (철계 형상기억합금을 이용한 콘크리트 기둥의 전단보강 실험연구)

  • Jung, Donghuk;Jeong, Saebyeok;Choi, Jae-Hee;Kim, Geunoh
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.28 no.1
    • /
    • pp.41-46
    • /
    • 2024
  • The current study investigates the seismic performance of shear-dominant RC columns retrofitted with iron-based shape memory alloy (Fe SMA). Three RC columns with insufficient transverse reinforcement were designed and fabricated for lateral cyclic loading tests. Before testing, two specimens were externally confined with carbon fiber-reinforced polymer (CFRP) sheets and self-prestressed Fe SMA strips. The test results showed that both CFRP and Fe SMA performed well in preventing severe shear failure exhibited by the unretrofitted control specimen. Furthermore, the two retrofitted specimens showed ductile flexural responses up to the drift ratios of ±8%. In terms of damage control, however, the Fe SMA confinement was superior to CFRP confinement in that the spalling of concrete was much less and that the rupture of confinement did not occur.