• 제목/요약/키워드: CFRP laminated

Search Result 108, Processing Time 0.024 seconds

A Study on the Vibration Characteristics of Laminated Composite Materials Rectangular Plates (적층 복합재료 사각판의 진동특성에 관한 연구)

  • 허동현;신귀수;정인성
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.486-490
    • /
    • 1997
  • Composite materials have varios complicated characteristics to the ply materials, ply orientations, ply stacking sequences and boundary conditions. Therefore, it is difficult to analysis composite materials. For efficient use of composite materials in engineering applications the dynamic behavior, that is, natural frequencies, nodal patterns should be informed. This study presents the experimental and FEM results for the free vibration of symmetrically and antisymmetrically laminated composite and hybrid composite rectangular plates. In order to demonstrate the validity of the experiment, FEM analysis using ANSYS was performed and natural frequencies experimentally obtined is compared with that calculated by FEM analysis. The results obtained from both experiment and FEM analysis show a good agreement.

  • PDF

Interlaminar Shear Stresses of Laminated Composite Plates Subjected to Transversely Imp (횡방향 충격을 받는 적층복합판의 층간전단응력 해석)

  • Ahn, Kook-Chan;Park, Seung-Bum;Kim, Bong-Hwan
    • Journal of the Korean Society of Safety
    • /
    • v.17 no.4
    • /
    • pp.31-37
    • /
    • 2002
  • This paper demonstrates the analyses of the interlaminar shear stress of laminated composite plates subjected to transversely impact. For this purpose, a plate finite element model based on the higher order shear deformation plate theory in conjunction with static contact laws is developed. Test materials were CFRP with cross-ply laminate $[O_4/{\theta}_4]_S$, $[90_4/{\theta}_4]_S$ stacking sequences and angle-ply laminate $[{\theta}_4/-{\theta}_4]_S$, $[{\theta}_4/-{\theta}_4]_S$ stacking deguences with $2^t{\times}40^w{\times}100^l(mm)$ dimension. As a result, stacking seguence and fiber orientation were found to have a significant effect on the interlaminar stresses in composite laminates.

Experimental Investigation on the Behaviour of CFRP Laminated Composites under Impact and Compression After Impact (CAI) (충격시 CFRP 복합재 판의 거동과 충격후 압축강도에 관한 실험적 연구)

  • Lee, J.;Kong, C.;Soutis, C.
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.04a
    • /
    • pp.129-134
    • /
    • 2003
  • The importance of understanding the response of structural composites to impact and CAI cannot be overstated to develop analytical models for impact damage and CAI strength predictions. This paper presents experimental findings observed from quasi-static lateral load tests, low velocity impact tests, CAI strength and open hole compressive strength tests using 3mm thick composite plates ($[45/-45/0/90]_{3s}$ - IM7/8552). The conclusion is drawn that damage areas for both quasi-static lateral load and impact tests are similar and the curves of several drop weight impacts with varying energy levels (between 5.4 J and 18.7 J) fallow the static curve well. In addition, at a given energy the peak force is in good agreement between the static and impact cases. From the CAI strength and open hole compressive strength tests, it is identified that the failure behaviour of the specimens was very similar to that observed in laminated plates with open holes under compression loading. The residual strengths are in good agreement with the measured open hole compressive strengths, considering the impact damage site as an equivalent hole. The experimental findings suggest that simple analytical models for the prediction of impact damage area and CAI strength can be developed on the basis of the failure mechanism observed from the experimental tests.

  • PDF

On the fabrication of carbon fabric reinforced epoxy composite shell without joints and wrinkling

  • Vasanthanathan, A.;Nagaraj, P.;Muruganantham, B.
    • Steel and Composite Structures
    • /
    • v.15 no.3
    • /
    • pp.267-279
    • /
    • 2013
  • This article describes a simple and cost effective fabrication procedure by using hand lay-up technique that is employed for the manufacturing of thin-walled axi-symmetric composite shell structures with carbon, glass and hybrid woven fabric composite materials. The hand lay-up technique is very commonly used in aerospace and marine industries for making the complicated shell structures. A generic fabrication procedure is presented in this paper aimed at manufacture of plain Carbon Fabric Reinforced Plastic (CFRP) and Glass Fabric Reinforced Plastic (GFRP) shells using hand lay-up process. This paper delivers a technical breakthrough in fabrication of composite shell structures without any joints and wrinkling. The manufacture of stiffened CFRP shells, laminated CFRP shells and hybrid (carbon/glass/epoxy) composite shells which are valued by the aerospace industry for their high strength-to-weight ratio under axial loading have also been addressed in this paper. A fabrication process document which describes the major processing steps of the composite shell manufacturing process has been presented in this paper. A study of microstructure of the glass fabric/epoxy composite, carbon fabric/epoxy composite and hybrid carbon/glass/fabric epoxy composites using Scanning Electron Microscope (SEM) has been also carried out in this paper.

Impact Damage of CFRP Laminated Shells with the Curvature (곡률반경을 갖는 CFRP 적층쉘의 충격손상)

  • 황재중;이길성;김영남;나승우;심재기;양인영
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1341-1344
    • /
    • 2003
  • Studies on impact damage of composite laminate shells were fewer compared with those on impact behaviors to analyze time-load, displacement-load and impact energy - energy absorption. Up to date the studies were not enough to demonstrate suitability of their results because they were dependent on theories and numerical analyses. In particular, it is a well-known fact that there was a correlation between initial peak load and damage resistance of composite material flat plates imposed with low-speed impact, but studies on composite material shells with curvature were also very few. Actually structures such as wings or moving bodies of airplanes, motor cases and pressure containers of rockets are circular. And as low-speed impact load is imposed for optimal design of take-off and landing, and containers of airplanes, it is very important to analyze evaluation of behaviors and damaged areas. Therefore, in this paper to evaluate the impact characteristics of the CFRP laminate shell according to size of curvature quantitatively, it was to identify energy absorption and impact damage instruments according to change of impact speed.

  • PDF

A Study on the Fracture Behavior of Laminated Carbon/Epoxy Composite by Acoustic Emission (음향방출법을 이용한 적층복합재료의 파괴거동 연구)

  • Oh, Jin-Soo;Woo, Chang-Ki;Rhee, Zhang-Kyu
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.3
    • /
    • pp.326-333
    • /
    • 2010
  • In this study, DAQ and TRA modules were applied to the CFRP single specimen testing method using AE. A method for crack identification in CFRP specimens based on k-mean clustering and wavelet transform analysis are presented. Mode I on DCB under vertical loading and mode II on 3-points ENF testing under share loading have been carried out, thereafter k-mean method for clustering AE data and wavelet transition method per amplitude have been applied to investigate characteristics of interfacial fracture in CFRP composite. It was found that the fracture mechanism of Carbon/Epoxy Composite to estimate of different type of fractures such as matrix(epoxy resin) cracking, delamination and fiber breakage same as AE amplitude distribution using a AE frequency analysis. In conclusion, the presented results provide a foundation for using wavelet analysis as efficient crack detection tool. The advantage of using wavelet analysis is that local features in a displacement response signal can be identified with a desired resolution, provided that the response signal to be analyzed picks up the perturbations caused by the presence of the crack.

The Investigation for Detection of Crack Initiation in the CFRP Laminates under Flexural Loading Test (굽힘하중에서 탄소섬유 복합적층재의 균열 발생 측정에 관한 연구)

  • Lee, Jun Hyuk;Kwon, Oh Heon
    • Journal of the Korean Society of Safety
    • /
    • v.37 no.5
    • /
    • pp.7-13
    • /
    • 2022
  • Digital image correlation (DIC) is a method used to measure the displacement and strain of structures. It involves transforming and analyzing images before and after deformation using correlation coefficients from irregular light and shade on the surface of structures. In the present study, a microspeckle pattern was applied to the surface of a specimen to identify initial cracking. The test specimen constituted CFRP composites laminated on a curved Al liner The specimen was manufactured by stacking 100 ply of CFRP prepregs in the 0° and 90° directions in a three-point bending test. The equivalent strain was evaluated through DIC analysis after monitoring deformation using a CCD camera. Fracture shape was observed using a microscope. The equivalent strain contour distribution was checked until the maximum load fracture occurred at the center of the test specimen. Variations in the strain indicated the initial occurrence and progression of microcracks. These results can be used to improve the accuracy of detecting micro crack initiation and to achieve structural stability.

Evaluation of tensile strengths and fracture toughness of plain weave composites (평직 CFRP 복합재료의 인장강도 및 파괴저항성 특성 평가)

  • Park, Soon-Cheol;Kang, Sung-Su;Kim, Gug-Yong;Choi, Jung-Hun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.8
    • /
    • pp.862-868
    • /
    • 2013
  • The mechanics of woven fabric-based laminated composites is complex. Then, many researchers have studied woven fabric CFRP materials but fracture resistance behaviors for composites have not been still standardized. It also shows the different behavior according to load and fiber direction. Therefore, there is a need to consider fracture resistance behavior in conformity with load and fiber direction at designing structure using woven CFRP materials. In this study, therefore, the tensile strength and resistance for plain-weave CFRP composite materials were investigated under various different angle condition(load to fiber angle: $0^{\circ}$, $15^{\circ}$, $30^{\circ}$, $45^{\circ}$). Tensile strength and fracture toughness tests were carried out under mode I transverse crack opening load by using compact tension specimens.

Sizing Optimization of CFRP Lower Control Arm Considering Strength and Stiffness Conditions (강도 및 강성 조건을 고려한 탄소섬유강화플라스틱(CFRP) 로어 컨트롤 아암의 치수 최적설계)

  • Lim, Juhee;Doh, Jaehyeok;Yoo, SangHyuk;Kang, Ohsung;Kang, Keonwook;Lee, Jongsoo
    • Korean Journal of Computational Design and Engineering
    • /
    • v.21 no.4
    • /
    • pp.389-396
    • /
    • 2016
  • The necessity for environment-friendly material development has emerged in the recent automotive field due to stricter regulations on fuel economy and environmental concerns. Accordingly, the automotive industry is paying attention to carbon fiber reinforced plastic (CFRP) material with high strength and stiffness properties while the lightweight. In this study, we determine a shape of lower control arm (LCA) for maximizing the strength and stiffness by optimizing the thickness of each layer when the stacking angle is fixed due to the CFRP manufacturing problems. Composite materials are laminated in the order of $0^{\circ}$, $90^{\circ}$, $45^{\circ}$, and $-45^{\circ}$ with a symmetrical structure. For the approximate optimal design, we apply a sequential two-point diagonal quadratic approximate optimization (STDQAO) and use a process integrated design optimization (PIDO) code for this purpose. Based on the physical properties calculated within a predetermined range of laminate thickness, we perform the FEM analysis and verify whether it satisfies the load and stiffness conditions or not. These processes are repeated for successive improved objective function. Optimized CFRP LCA has the equivalent stiffness and strength with light weight structure when compared to conventional aluminum design.

The Experimental Analysis of the PVC Foam Cored CFRP Sandwich Composite for the Mixed Mode Delamination Characteristics (복합모드 층간분리특성에 대한 PVC폼 코아 탄소섬유샌드위치 복합재의 실험적 해석)

  • Kwak, Jung Hoon;Yun, Yu Seong;Kwon, Oh Heon
    • Journal of the Korean Society of Safety
    • /
    • v.33 no.2
    • /
    • pp.8-13
    • /
    • 2018
  • The light weight composite materials have been replacing in high performance structures. The object of this study is to examine the effects of the initial crack location about a delamination in a PVC foam cored sandwich composite that is used for the strength improvement of structures. The initial crack location and fiber laminates thickness were changed with several types. The MMB specimen was used for evaluating the fracture toughness and crack behaviors. The material used in the experiment is a commercial twill carbon prepreg in CFRP material and Airex in PVC foam core. Sandwich laminate composites are composed by PVC foam core layer between CFRP face sheets. The face sheets were fabricated as 2 types of 5 and 8 plies. The initial cracks were located in a PVC form core and the interface of upper CFRP sheet. From the results, the crack initiation was affected with the location of the initial crack inserted in the PVC foam core. Among them, the initial crack at 1/3 of the upper part of the PVC foam core was the most rapid progression. And the critical energy release rate was $0.40kJ/m^2$, which is the lowest value when the initial crack was inserted into the interface between a PVC foam core and CFRP laminated with 5 plies. Meanwhile, the highest value of $1.27kJ/m^2$ was obtained when the initial crack was located at the center line in case of the 8 plies.