• Title/Summary/Keyword: CFRP Strips

Search Result 74, Processing Time 0.024 seconds

Post-tensioning System with Externally Bonded CFRP Strips for Strengthening RC Members (RC 부재의 휨 보강을 위한 외부 부착형 탄소섬유판 포스트텐션 시스템)

  • You, Young-Chan;Choi, Ki-Sun;Kim, Keung-Hwan
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.6
    • /
    • pp.155-163
    • /
    • 2008
  • Experimental study has been performed in order to investigate the behavior of RC beams strengthened with externally bonded post-tensioned CFRP (Carbon Fiber Reinforced Polymer) strips. Specimens consist of 9 small-scaled specimens with the different post-tensioning level as a main test parameter. A control specimen and specimens with simply bonded CFRP strips have been manufactured to compare the structural performances of prestressed system. From the test results, it was observed that the specimens strengthened with simply bonded CFRP strips showed debonding failure below 50% of CFRP tensile strength due to premature debonding. On the other hand, all the specimens strengthened with post- tensioned CFRP strips reached the rupture strength of the CFRP strip. The cracking and yielding loads were also increased proportionally to the post-tensioning level, but the ultimate loads were nearly equal regardless of the post-tensioning level.

Post-tensioning System with Externally Unbonded CFRP Strips for Strengthening RC Members (RC 부재의 휨 보강을 위한 외부 비부착형 탄소섬유판 포스트텐션 시스템)

  • You, Young-Chan;Choi, Ki-Sun;Kim, Keung-Hwan
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.6
    • /
    • pp.147-154
    • /
    • 2008
  • Experimental study has been performed in order to investigate the behavior of RC beams strengthened with externally unbonded post-tensioned CFRP (Carbon Fiber Reinforced Polymer) strips using embedded or stud-type plate anchorages. Total 10 small-scaled specimens were manufactured with the different post-tensioning level and types of mechanical anchorage as a main test parameter. A control specimen and specimens with simply bonded CFRP strips were included to compare the structural performances of each system. From the test results, it was observed that the specimens strengthened with simply bonded CFRP strips showed debonding failure below 50% of CFRP tensile strength due to premature debonding. On the other hand, all the specimens strengthened with post- tensioned unbonded CFRP strips reached the rupture strength of the CFRP strip. Also, it was observed that the specimens with stud-type anchorage have equivalent strengthening performance compared with embedded-type anchorage.

Low velocity impact behavior of shear deficient RC beam strengthened with CFRP strips

  • Anil, Ozgur;Yilmaz, Tolga
    • Steel and Composite Structures
    • /
    • v.19 no.2
    • /
    • pp.417-439
    • /
    • 2015
  • Many methods are developed for strengthening of reinforced concrete structural members against the effects of shear. One of the commonly used methods in recent years is turned out to be bonding of fiber reinforced polymers (FRP). Impact loading is one of the important external effects on the reinforced concrete structural members during service period among the others. The determination of magnitude, the excitation time, deformations and stress due to impact loadings are complicated and rarely known. In recent year impact behavior of reinforced concrete members have been researched with experimental studies by using drop-weight method and numerical simulations are done by using finite element method. However the studies on the strengthening of structural members against impact loading are very seldom in the literature. For this reason, in this study impact behavior of shear deficient reinforced concrete beams that are strengthened with carbon fiber reinforced polymers (CFRP) strips are investigated experimentally. Compressive strength of concrete, CFRP strips spacing and impact velocities are taken as the variables in this experimental study. The acceleration due to impact loading is measured from the specimens, while velocities and displacements are calculated from these measured accelerations. RC beams are modeled with ANSYS software. Experimental result and simulations result are compared. Experimental result showed that impact behaviors of shear deficient RC beams are positively affected from the strengthening with CFRP strip. The decrease in the spacing of CFRP strips reduced the acceleration, velocity and displacement values measured from the test specimens.

Behavior of RC beams strengthened with NSM CFRP strips under flexural repeated loading

  • Fathuldeen, Saja Waleed;Qissab, Musab Aied
    • Structural Engineering and Mechanics
    • /
    • v.70 no.1
    • /
    • pp.67-80
    • /
    • 2019
  • Strengthening with near surface mounted carbon fibre reinforced polymers (NSM-CFRP) is a strengthening technique that have been used for several decades to increase the load carrying capacity of reinforced concrete members. In Iraq, many concrete buildings and bridges were subjected to a wide range of damage as a result of the last war and many other events. Accordingly, there is a progressive increase in the strengthening of concrete structures, bridges in particular, by using CFRP strengthening techniques. Near-surface mounted carbon fibre polymer has been recently proved as a powerful strengthening technique in which the CFRP strips are sufficiently protected against external environmental conditions especially the high-temperature rates in Iraq. However, this technique has not been examined yet under repeated loading conditions such as traffic loads on bridge girders. The main objective of this research was to investigate the effectiveness of NSM-CFRP strips in reinforced concrete beams under repeated loads. Different parameters such as the number of strips, groove size, and two types of bonding materials (epoxy resin and cement-based adhesive) were considered. Fifteen NSM-CFRP strengthened beams were tested under concentrated monotonic and repeated loadings. Three beams were non-strengthened as reference specimens while the remaining were strengthened with NSM-CFRP strips and divided into three groups. Each group comprises two beams tested under monotonic loads and used as control for those tested under repeated loads in the same group. The experimental results are discussed in terms of load-deflection behavior up to failure, ductility factor, cumulative energy absorption, number of cycles to failure, and the mode of failure. The test results proved that strengthening with NSM-CFRP strips increased both the flexural strength and stiffness of the tested beams. An increase in load carrying capacity was obtained in a range of (1.47 to 4.49) times that for the non-strengthened specimens. Also, the increase in total area of CFRPs showed a slight increase in flexural capacity of (1.02) times the value of the control strengthened one tested under repeated loading. Increasing the total area of CFRP strips resulted in a reduction in ductility factor reached to (0.71) while the cumulative energy absorption increased by (1.22) times the values of the strengthened reference specimens tested under repeated loading. Moreover, the replacement of epoxy resin with cement-based adhesive as a bonding material exhibited higher ductility than specimen with epoxy resin tested under monotonic and repeated loading.

An Experimental Study on the Shear Behavior of RC Beams Strengthened with Near Surface Mounted and Externally Bonded CFRP Strips (표면매입 및 외부부착 탄소섬유판으로 보강된 철근콘크리트 부재의 전단 거동에 관한 실험적연구)

  • Lim, Dong-Hwan;Kwon, Yeong-Soon
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.3
    • /
    • pp.337-345
    • /
    • 2009
  • The purpose of this study is to investigate the shear strengthening effectiveness of the beams strengthened with near surface mounted (NSM) and external bonded (EB) CFRP strips. A total of nine concrete beams were made and tested. From this study, it was found that the shear stiffness and strength of the beams strengthened with NSM and EB strips were significantly improved compared to the control beam. Failure of the beam strengthened with NSM and EB strips was initiated by shear cracks, propagated diagonally to the adjacent epoxy grooves without crossing the epoxy and finally sudden diagonal crack connecting the point of application of load and flexural crack was occurred. For the beam strengthened combined with NSM and EB CFRP strips, the tensile strains in the NSM CFRP strips were observed in the range of 0.35% to 0.45% and strains with EB strips were measured about 0.3%.

An Experimental Study on the Flexural Behavior of RC Beams Strengthened with NSM and EBR CFRP Strips (표면매입 및 외부부착 탄소섬유판으로 보강된 RC보의 휨 거동에 관한 실험 연구)

  • Lim, Dong-Hwan
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.5
    • /
    • pp.601-609
    • /
    • 2008
  • The purpose of this study is to investigate the flexural strengthening effectiveness for the beams combined reinforced with NSM CFRP strips and EBR CFRP strips. To accomplish this objective, a total of nine concrete T beams were tested. From this study, it is found that the flexural stiffness and strength of the beams combined reinforced with NSM and EBR strips were significantly improved compared to the beams strengthened only with NSM CFRP strip. The maximum increase of flexural strength was 347% compared to the beam without CFRP strip. Failure of the beam combined reinforced with NSM and EBR strips (T shape) is initiated by debonding of EBR strips attached on the bottom face, and it was succeeded a part of separatio-n of NSM strips along the longitudinal direction and secondly failure of NSM strips was occurred, eventually sudden explosive failure with the separation of concrete cover in the shear region. This result shows that the NSM and EBR strips have good combination to resist applied load and the combined reinforcement with NSM and EBR strips can redistribute appropriately the total stress subjected concrete beam to the EBR and NSM strips.

Hysteretic Behavior Evaluation of Reinforced Concrete Columns Retrofitted with Iron-based Shape Memory Alloy Strips (철계 형상기억합금 스트립으로 보강된 콘크리트 기둥의 반복이력거동 평가)

  • Jeong, Saebyeok;Jung, Donghyuk
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.35 no.5
    • /
    • pp.287-297
    • /
    • 2022
  • This paper presents experimental and analytical studies on the lateral cyclic behavior of RC columns actively confined with iron-based shape memory alloy (Fe-SMA) strips. Based on the Anexperimental study, we investigated the effectiveness of active confinement through compression testings of concrete cylinders confined by Fe SMA strips and carbon fiber-reinforced polymer (CFRP) sheets. The test results showed that the specimens confined with Fe SMA strips significantly increased the deformation capacity of the concrete, even under lower confining pressures, compared to those specimensconfined with CFRP sheets. The experimental results were used to develop finite-element models of RC columns confined with Fe SMA or CFRP in their plastic-hinge region. After validating the proposed analytical model through comparison with the results from a previous RC column test, a series of lateral cyclic load analyses were carried out for the RC columns confined with Fe SMA and CFRP. The analytical results revealed that the lateral cyclic behavior of the Fe SMA-confined column was greatly enhanced in terms of deformation and energy dissipation capacities compared with tothat of the as-built and CFRP-confined columns.

Characteristics of Shear Behavior of Reinforced Concrete Beams Strengthened with Near Surface Mounted CFRP Strips (CFRP 스트립 표면매립공법으로 보강된 철근콘크리트 보의 전단거동 특성)

  • Han, Sang Hoon;Hong, Ki Nam;Shin, Byoung Gil;Lim, Jin Mook;Kwak, So Shin
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.5
    • /
    • pp.178-189
    • /
    • 2011
  • Tests and analyses were performed in this study to assess the shear strength of Reinforced Concrete(RC) members strengthened by the Near Surface Mounted(NSM) technique in shear, which is drawing attention as an alternative to the Carbon Fiber Reinforced Polymer(CFRP) bonding strengthening technique. Four-point bending tests were performed on 7 RC specimens without any shear reinforcement. The test variables such as the inclination of CFRP strip (45 degrees and 90 degrees), and the spacing of CFRP strip (250mm, 200mm, 150mm, 100mm) were considered. Through the testing scenarios, the effect of each test variable on the failure mode and the shear strength of the RC members strengthened by the NSM technique in shear were assessed. The test results show that the specimens with CFRP strips at 45 degrees go to failure as a result of the strip fracture, but the specimens with CFRP strips at 90 degrees go to failure as a result of the slip of strips. Strips at 45 degrees was the more effective than strips at 90 degrees, not only in terms of increasing beam shear resistance but also in assuring larger deformation capacity at beam failure. In addition, the RBSN analysis appropriately predicted the crack formation and the load-displacement response of the RC members strengthened by the NSM technique in shear.

A numerical study on behavior of CFRP strengthened shear wall with opening

  • Behfarnia, Kiachehr;Shirneshan, Ahmadreza
    • Computers and Concrete
    • /
    • v.19 no.2
    • /
    • pp.179-189
    • /
    • 2017
  • Concrete shear walls are one of the major structural lateral resisting systems in buildings. In some cases, due to the change in the occupancy of the structure or functional requirements like architectural and even mechanical ones, openings need to be provided and installed in structural walls after their construction. Providing these openings may significantly influence the structural behavior of the constructed wall. This paper considers the results of a nonlinear finite element analysis of shear walls with opening strengthened by carbon fiber reinforced polymer (CFRP) strips with different configurations. Details of bond-slip constitutive model of link elements to simulate the connections of FRP strips to concrete surface is presented. The proposed model in this research has been validated using experimental results available in the literature. The results indicated that the proposed configuration of CFRP strips significantly improved the lateral resistance and deformation capacity of the shear walls with opening.

Parametric study of shear strength of CFRP strengthened end-web panels

  • Shalaby, Haitham A.;Hassan, Maha M.;Safar, Sherif S.
    • Steel and Composite Structures
    • /
    • v.31 no.2
    • /
    • pp.159-172
    • /
    • 2019
  • Strengthening of civil infrastructure with advanced composites have recently become one of the most popular methods. The use of Fiber Reinforced Polymer (FRP) strips plates and fabric for strengthening of reinforced concrete structures has well established design guidelines and standards. Research on the application of FRP composites to steel structures compared to concrete structures is limited, especially for shear strengthening applications. Whereas, there is a need for cost-effective system that could be used to strengthen steel high-way bridge girders to cope with losses due to corrosion in addition to continuous demands for increasing traffic loads. In this study, a parametric finite element study is performed to investigate the effect of applying thick CFRP strips diagonally on webs of plate girders on the shear strength of end-web panels. The study focuses on illustrating the effect of several geometric parameters on nominal shear strength. Hence, a formula is developed to determine the enhancement of shear strength gained upon the application of CFRP strips.