• Title/Summary/Keyword: CFFT (Concrete Filled FRP Tube)

Search Result 14, Processing Time 0.022 seconds

Section Design of CFFT including Confined Effect (CFFT구조의 구속효과를 고려한 단면설계)

  • Choi, Young-Min;Hwang, Yoon-Koog;Lee, Young-Ho
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.45-46
    • /
    • 2009
  • The main objective of this study is to suggest section design method of CFFT(Concrete Filled FRP Tube) structures which are considered of confined effect by FRP tube and using high strength concrete and PS strands for pier. It may be stated that the proposed method may be implemented as a rational and practical approach for CFFT section design.

  • PDF

Experimental Investigation on the Compression Behavior of Concrete Filled Circular FRP Tubes (콘크리트 충전 FRP 원통관의 압축거동에 관한 실험적 연구)

  • Joo, Hyung-Joong;Lee, Seung-Sik;Kim, Young-Ho;Park, Jong-Hwa;Yoon, Soon-Jong
    • Composites Research
    • /
    • v.21 no.3
    • /
    • pp.24-30
    • /
    • 2008
  • Durability problems may arise in the concrete, which is one of the major construction materials, used in the construction field. Bridge piers and foundation piles are usually made with concrete and they are exposed to the moisture and hence the durability of the concrete reduced significantly due to oxidization of re-bar and icing of concrete. To mitigate such problems, FRP tube has been developed and the concrete filled FRP tube (CFFT) has been investigated to find the confinement effect which is provided additionally. It was reported that if the concrete is wrapped with FRP, strength and chemical resistance are improved significantly. In order to apply such a member in the construction field, structural behavior and applicable design guideline or design criteria must be thoroughly investigated. In the experimental investigation, the results are compared with the previous research results and the relationship which can predict the ultimate strength and strain is suggested. In addition, some comments found at the compression tests are given briefly.

An Experimental Study for the Compression Strength of Hybrid CFFT Pile (FRP 콘크리트 합성말뚝의 압축강도에 대한 실험적 연구)

  • Choi, Jin-Woo;Park, Joon-Seok;Nam, Jung-Hoon;An, Dong-Jun;Kang, In-Kyu;Yoon, Soon-Jong
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.2 no.1
    • /
    • pp.30-39
    • /
    • 2011
  • In this paper, we persent the results of on experimental investigations pertaining to the structural behavior of new type of concrete filled fiber reinforced plastic circular tubes (i.e., hybrid CFFT, HCFFT) which are suggested in order to mitigate the problems associated with the concrete filled steel-concrete composite tube (CFT) and the concrete filled fiber reinforced plastic tube (CFFT). It is found that when the HCFFT is used in the construction of pile foundation the HCFFT pile can transfer axial as well as flexural loads from the superstructure to the underground effectively in comparison with CFT and CFFT piles.

Development of the Hybrid CFFT Pile (FRP-콘크리트 합성말뚝의 개발)

  • Choi, Jin-Woo;Joo, Hyung-Joong;Nam, Jeong-Hun;Yoon, Soon-Jong
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.1 no.2
    • /
    • pp.20-28
    • /
    • 2010
  • In this paper, new type CFFT (Concrete Filled FRP Tube) was suggested in order to improve the flexural stiffness. Since the existing CFFT was produced by filament winding process, re-bar for concrete may be necessary in order to ensure structural safety under flexure re-bar. In comparison with existing type CFFT, new type CFFT was reinforced by circular shaped pultrusion FRP without re-bar. Filament winding FRP was attached to the outer layer of pultrusion FRP. Structural behavior of new type CFFT filled with concrete (HCFFT) was investigated by the mechanical property test for the component element and the FE analysis. Furthermore, compressive strength of the HCFFT member based on the equation suggested in previous studies.

  • PDF

Compression Strength Test of FRP Reinforced Concrete Composite Pile (FRP-콘크리트 합성말뚝 시편의 압축강도실험)

  • Lee, Young-Geun;Choi, Jin-Woo;Park, Joon-Seok;Yoon, Soon-Jong
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.2 no.4
    • /
    • pp.19-27
    • /
    • 2011
  • In this paper, we present a part of results to develop new type hybrid FRP-concrete composite pile (i.e., concrete filled fiber reinforced plastic circular tubes, hybrid CFFT, HCFFT). The purpose of this paper is to evaluate compressive loading capacity through compressive strength test. Before compressive strength test of HCFFT, we investigated mechanical properties of pultruded fiber reinforced plastic (PFRP) and filament winding fiber reinforced plastic (FFRP). For estimating the compressive strength of HCFFT, uni-axial compression strength tests of HCFFT compression members were conducted. The test variables are compressive strengths of concrete and thickness of FFRP. In addition, uni-axial compression strength tests of concrete filled fiber reinforced plastic circular tube (CFFT) except PFRP members were conducted. The test variable in the test is thickness of FFRP. From the test result, the compressive strength of the HCFFT in larger than compressive strength of CFFT as much as 47%. It can be observed that the uni-axial compressive strength of the HCFFT increased if the concrete strength and the thickness of exterior filament winding FRP tube increased. In addition, the finite element analysis result is compared with the experimental result. The difference between the experimental and FEM results is in the range of 0.14% to 17.95%.

Experimental and analytical investigations of CFFT columns with and without FRP bars under concentric compression

  • Khan, Qasim S.;Sheikh, M. Neaz;Hadi, Muhammad N.S.
    • Steel and Composite Structures
    • /
    • v.30 no.6
    • /
    • pp.591-601
    • /
    • 2019
  • This research study investigates experimentally and analytically the axial compressive behaviour of Concrete Filled Fiber Reinforced Polymer Tube (CFFT) columns with and without Fiber Reinforced Polymer (FRP) bars. The experimental program comprises five circular columns of 204-206 mm outer diameter and 800-812 mm height. All columns were tested under concentric axial compressive loads. It was found that CFFT columns with and without FRP bars achieved higher peak axial compressive loads and corresponding axial deformations than conventional steel reinforced concrete (RC) column. The contribution of FRP bars was about 12.1% of the axial compressive loads carried by CFFT columns reinforced with FRP bars. Axial load-axial deformation ($P-{\delta}$) curves of CFFT columns were analytically constructed, which mapped well with the experimental $P-{\delta}$ curves. Also, an equation was proposed to predict the axial compressive load capacity of CFFT columns with and without FRP bars, which adequately considers the contributions of the circumferential confinement provided by FRP tubes and lower ultimate strength of FRP bars in compression than in tension.

Development of Design Program for CFFT Structure (CFFT구조의 설계프로그램 개발)

  • Choi, Young-Min;Hwang, Yoon-Koog;Lee, Young-Ho;Lee, Jung-Howan;Kim, Dong-Chan
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2009.04a
    • /
    • pp.549-552
    • /
    • 2009
  • 본 논문에서는 재료적 성능이 우수하며 경량재료로서 최근 건설구조물에 활용하고자 하는 연구가 활발히 진행되고 있는 섬유보강재료(FRP : Fiber Reinforced Polymer)를 이용한 합성구조인 CFFT(Concrete Filled FRP Tube)의 설계프로그램을 개발하여 제안하고자 하였다. 먼저, CFFT구조는 FRP관에 의해 철근콘크리트가 구속되는 구조로서 기둥과 같이 축력이 도입되는 경우 포아송효과에 의한 변형을 FRP관이 구속효과를 줌으로써 콘크리트의 역학적 거동을 개선하게 되는데 본 연구에서는 실험에 의해 검증된 식을 제시하였으며 이를 바탕으로 CFFT구조를 설계하는 알고리즘을 제안하였다. 또한 CFFT구조는 FRP관의 구속으로 인해 고강도콘크리트와 긴장재의 도입이 가능한 구조로서 이에 대한 설계도 포함하였다. 그러나 이방성재료인 FRP의 설계와 동시에 FRP관에 의한 구속효과를 고려하는 CFFT구조의 설계는 일반 실무설계자들에게는 다소 난해한 작업으로써 전산화 설계프로그램의 필요성이 대두되어 본 연구에서 CFFT구조의 설계프로그램을 개발하였다. 개발된 설계프로그램의 검증을 위해 일반 철근콘크리트기둥, CFFT기둥, 고강도콘크리트와 PS긴장재를 도입한 CFFT기둥을 설계한 결과, 매우 실용적이며 타당한 설계가 수행될 수 있음을 확인하였다.

  • PDF

Steel and FRP double-tube confined RAC columns under compression: Comparative study and stress-strain model

  • Xiong, Ming-Xiang;Chen, Guangming;Long, Yue-Ling;Cui, Hairui;Liu, Yaoming
    • Steel and Composite Structures
    • /
    • v.43 no.2
    • /
    • pp.257-270
    • /
    • 2022
  • Recycled aggregate concrete (RAC) is rarely used in load-carrying structural members. To widen its structural application, the compressive behavior of a promising type of composite column, steel-fiber reinforced polymer (FRP) double-tube confined RAC column, has been experimentally and analytically investigated in this study. The objectives are the different performance of such columns from their counterparts using natural aggregate concrete (NAC) and the different mechanisms of the double-tube and single-tube confined concrete. The single-tube confined concrete refers to that in concrete-filled steel tubular (CFST) columns and concrete-filled FRP tubular (CFFT) columns. The test results showed that the use of recycled coarse aggregates (RCA) affected the axial load-strain response in terms of deformation capacity but such effect could be eliminated with the increasing confinement. The composite effect can be triggered by the double confinement of the steel and carbon FRP (CFRP) tubes but not by the steel and polyethylene terephthalate (PET) FRP tubes. The proposed analysis-oriented stress-strain model is capable to capture the load-deformation history of such steel-FRP double-tube confined concrete columns under axial compression.

Structural Behavior of Flexurally Reinforced FRP-Concrete Composite Compression Member with FRP (FRP로 휨보강된 FRP-콘크리트 합성압축재의 구조적 거동)

  • Park, Joon-Seok;Joo, Hyung-Joong;Nam, Jeong-Hun;Yoon, Soon-Jong
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.1 no.3
    • /
    • pp.10-16
    • /
    • 2010
  • In construction industries, new construction materials are needed to overcome some problems associated with the use of conventional construction materials due to the change of environmental and social requirements. Accordingly, the requirements to be satisfied in the design of civil engineering structures are diversified. As a new construction material in the civil engineering industries, fiber reinforced polymeric plastic (FRP) has a superior corrosion resistance, high specific strength/stiffness, etc. Therefore, such properties can be used to mitigate the problems associated with the use of conventional construction materials. Nowadays, new types of bridge piers and marine piles are being studied for new construction. They are usually made of concrete filled fiber reinforced polymeric plastic tubes (CFFT). In this paper, a new type of FRP-concrete composite pile which is composed of reinforced concrete filled FRP tube (RCFFT) is proposed to improve compressive strength as well as flexural strength. The load carrying capacity of proposed RCFFT compression member is discussed based on the result of experimental and analytical investigations.

  • PDF