• 제목/요약/키워드: CFDST columns

검색결과 24건 처리시간 0.02초

Mechanical behaviour of concrete filled double skin steel tubular stub columns confined by FRP under axial compression

  • Wang, Jun;Liu, Weiqing;Zhou, Ding;Zhu, Lu;Fang, Hai
    • Steel and Composite Structures
    • /
    • 제17권4호
    • /
    • pp.431-452
    • /
    • 2014
  • The present study focuses on the mechanical behaviour of concrete filled double skin steel tubular (CFDST) stub columns confined by fiber reinforced polymer (FRP). A series of axial compression tests have been conducted on two CFDST stub columns, eight CFDST stub columns confined by FRP and a concrete-filled steel tubular (CFST) stub column confined by FRP, respectively. The influences of hollow section ratio, FRP wall thickness and fibre longitudinal-circumferential proportion on the load-strain curve and the concrete stress-strain curve for stub columns with annular section were discussed. The test results displayed that the FRP jacket can obviously enhance the carrying capacity of stub columns. Based on the test results, a new model which includes the effects of confinement factor, hollow section ratio and lateral confining pressure of the outer steel tube was proposed to calculate the compressive strength of confined concrete. Using the present concrete strength model, the formula to predict the carrying capacity of CFDST stub columns confined by FRP was derived. The theoretically predicted results agree well with those obtained from the experiments and FE analysis. The present method is also adapted to calculate the carrying capacity of CFST stub columns confined by FRP.

Tests and numerical analysis on octagonal concrete-filled double skinned steel tubular short columns under axial compression

  • Manigandan R
    • Steel and Composite Structures
    • /
    • 제50권5호
    • /
    • pp.499-513
    • /
    • 2024
  • This paper describes the experimental and numerical investigations of octagonal Concrete-Filled Double Skinned Steel Tube (CFDST) short columns under the influence of various internal sizes of the circular and square steel tubes, with constant cross-sectional dimensions of the external octagonal steel tube under concentric loading. The non-linear finite element analysis of octagonal CFDST columns was executed using the ABAQUS to forecast and compare the axial compression behavior influenced by the various sizes of internal circular and square steel tubes. The study shows that the axial compressive strength and ductility of octagonal CFDST columns were significantly influenced by various internal dimensions of the circular and square steel tubes with the strengths of constituent materials.

Hybrid machine learning with moth-flame optimization methods for strength prediction of CFDST columns under compression

  • Quang-Viet Vu;Dai-Nhan Le;Thai-Hoan Pham;Wei Gao;Sawekchai Tangaramvong
    • Steel and Composite Structures
    • /
    • 제51권6호
    • /
    • pp.679-695
    • /
    • 2024
  • This paper presents a novel technique that combines machine learning (ML) with moth-flame optimization (MFO) methods to predict the axial compressive strength (ACS) of concrete filled double skin steel tubes (CFDST) columns. The proposed model is trained and tested with a dataset containing 125 tests of the CFDST column subjected to compressive loading. Five ML models, including extreme gradient boosting (XGBoost), gradient tree boosting (GBT), categorical gradient boosting (CAT), support vector machines (SVM), and decision tree (DT) algorithms, are utilized in this work. The MFO algorithm is applied to find optimal hyperparameters of these ML models and to determine the most effective model in predicting the ACS of CFDST columns. Predictive results given by some performance metrics reveal that the MFO-CAT model provides superior accuracy compared to other considered models. The accuracy of the MFO-CAT model is validated by comparing its predictive results with existing design codes and formulae. Moreover, the significance and contribution of each feature in the dataset are examined by employing the SHapley Additive exPlanations (SHAP) method. A comprehensive uncertainty quantification on probabilistic characteristics of the ACS of CFDST columns is conducted for the first time to examine the models' responses to variations of input variables in the stochastic environments. Finally, a web-based application is developed to predict ACS of the CFDST column, enabling rapid practical utilization without requesting any programing or machine learning expertise.

Nonlinear analysis and design of concrete-filled dual steel tubular columns under axial loading

  • Wan, Cheng-Yong;Zha, Xiao-Xiong
    • Steel and Composite Structures
    • /
    • 제20권3호
    • /
    • pp.571-597
    • /
    • 2016
  • A new unified design formula for calculating the composite compressive strength of the axially loaded circular concrete filled double steel tubular (CFDST) short and slender columns is presented in this paper. The formula is obtained from the analytic solution by using the limit equilibrium theory, the cylinder theory and the "Unified theory" under axial compression. Furthermore, the stability factor of CFDST slender columns is derived on the basis of the Perry-Robertson formula. This paper also reports the results of experiments and finite element analysis carried out on concrete filled double steel tubular columns, where the tested specimens include short and slender columns with different steel ratio and yield strength of inner tube; a new constitutive model for the concrete confined by both the outer and inner steel tube is proposed and incorporated in the finite element model developed. The comparisons among the finite element results, experimental results, and theoretical predictions show a good agreement in predicting the behavior and strength of the concrete filled steel tubular (CFST) columns with or without inner steel tubes. An important characteristic of the new formulas is that they provide a unified formulation for both the plain CFST and CFDST columns relating to the compressive strength or the stability bearing capacity and a set of design parameters.

Concrete filled double skin square tubular stub columns subjected to compression load

  • Uenaka, Kojiro
    • Structural Engineering and Mechanics
    • /
    • 제77권6호
    • /
    • pp.745-751
    • /
    • 2021
  • Concrete filled double skin tubular members (CFDST) consist of double concentric circular or square steel tubes with concrete filled between the two steel tubes. The CFDST members, having a hollow section inside the internal tube, are generally lighter than ordinary concrete filled steel tubular members (CFT) which have a solid cross-section. Therefore, when the CFDST members are applied to bridge piers, reduction of seismic action can be expected. The present study aims to investigate, experimentally, the behavior of CFDST stub columns with double concentric square steel tubes filled with concrete (SS-CFDST) when working under centric compression. Two test parameters, namely, inner-to-outer width ratio and outer square steel tube's width-to-thickness were selected and outer steel tube's width-to-thickness ratio ranging from 70 to 160 were considered. In the results, shear failure of the concrete fill and local buckling of the double skin tubes having largest inner-to-outer width ratio were observed. A method to predict axial loading capacity of SS-CFDST is also proposed. In addition, the load capacity in the axial direction of stub column test on SS-CFDST is compared with that of double circular CFDST. Finally, the biaxial stress behavior of both steel tubes under plane stress is discussed.

Test and analysis of concrete-filled double steel and double skin tubular columns having outer stainless steel tube

  • Tokgoz, Serkan;Karaahmetli, Sedat;Dundar, Cengiz
    • Steel and Composite Structures
    • /
    • 제45권1호
    • /
    • pp.23-38
    • /
    • 2022
  • This paper presents experimental and analytical studies of eccentrically loaded concrete-filled double steel (CFDST) and concrete-filled double skin tube (DCFST) columns having outer stainless steel tube. Eighteen CFDST and DCFST column specimens were manufactured and tested to examine the strength and load-deflection responses. In the study, the main parameters were concrete strength, load eccentricity, cross section and slenderness. The strengths, load-deflection diagrams and failure patterns of the columns were observed. In addition, the tested CFDST and DCFST columns were analyzed to attain the capacity and load versus lateral deflection responses. The obtained theoretical results were compared with the test results. A parametric study was also performed to research the effects of the ratio of eccentricity (e/Ho) slenderness ratio (L/r), Ho/to ratio, Hi/ti ratio and the concrete compressive strength on the behavior of columns. In this work, the obtained results indicated that the ductility and capacity of columns were affected by cross section, concrete strength, steel strength, loading eccentricity and slenderness.

Tests of concrete-filled double skin CHS composite stub columns

  • Zhao, Xiao-Ling;Grzebieta, Raphael;Elchalakani, Mohamed
    • Steel and Composite Structures
    • /
    • 제2권2호
    • /
    • pp.129-146
    • /
    • 2002
  • This paper describes a series of compression tests carried out on concrete filled double skin tubes (CFDST). Both outer and inner tubes are cold-formed circular hollow sections (CHS). Six section sizes were chosen for the outer tubes with diameter-to-thickness ratio ranging from 19 to 57. Two section sizes are chosen for the inner tubes with diameter-to-thickness ratio of 17 and 33. The failure modes, strength, ductility and energy absorption of CFDST are compared with those of empty single skin tubes. Increased ductility and energy absorption have been observed for CFDST especially for those having slender outer tubes with larger diameter-to-thickness ratio. Predictions from several theoretical models are compared with the ultimate strength of CFDST stub columns obtained in the tests. The proposed formula was found to be in good agreement with the experimental data.

Behavior of concrete-filled double skin steel tube beam-columns

  • Hassan, Maha M.;Mahmoud, Ahmed A.;Serror, Mohammed H.
    • Steel and Composite Structures
    • /
    • 제22권5호
    • /
    • pp.1141-1162
    • /
    • 2016
  • Concrete-filled double skin steel tube (CFDST) beam-columns are widely used in industrial plants, subways, high-rise buildings and arch bridges. The CFDST columns have the same advantages as traditional CFT members. Moreover, they have lighter weight, higher bending stiffness, better cyclic performance, and have higher fire resistance capacities than their CFT counterparts. The scope of this study is to develop finite element models that can predict accepted capacities of double skin concrete-filled tube columns under the combined effect of axial and bending actions. The analysis results were studied to determine the distribution of stresses among the different components and the effect of the concrete core on the outer and inner steel tube. The developed models are first verified against the available experimental data. Accordingly, an extensive parametric study was performed considering different key factors including load eccentricity, slenderness ratio, concrete compressive strength, and steel tube yield strength. The results of the performed parametric study are intended to supplement the experimental research and examine the accuracy of the available design formulas.

Component based moment-rotation model of composite beam blind bolted to CFDST column joint

  • Guo, Lei;Wang, Jingfeng;Wang, Wanqian;Ding, Zhaodong
    • Steel and Composite Structures
    • /
    • 제38권5호
    • /
    • pp.547-562
    • /
    • 2021
  • This paper aims to explore the mechanical behavior and moment-rotation model of blind bolted joints between concrete-filled double skin steel tubular columns and steel-concrete composite beams. For this type of joint, the inner tube and sandwiched concrete were additionally identified as basic components compared with CFST blind bolted joint. A modified moment-rotation model for this type of connection was developed, of which the compatibility condition and mechanical equilibrium were employed to determine the internal forces of basic components and neutral axis. Following this, load transfer mechanism among the inner tube, sandwiched concrete and outer tube was discussed to assert the action area of the components. Subsequently, assembly processes of basic coefficients in terms of their stiffness and resistances based on the component method by simplifying them as assemblages of springs in series or in parallel. Finally, an experimental investigation on four substructure joints with CFDST columns for validation purposes was carried out to capture the connection details. The predicted results derived from the mechanical models coincided well with the experimental results. It is demonstrated that the proposed mechanical model is capable of evaluating the complete moment-rotation relationships of blind bolted CFDST column composite connections.

Hybrid GA-ANN and PSO-ANN methods for accurate prediction of uniaxial compression capacity of CFDST columns

  • Quang-Viet Vu;Sawekchai Tangaramvong;Thu Huynh Van;George Papazafeiropoulos
    • Steel and Composite Structures
    • /
    • 제47권6호
    • /
    • pp.759-779
    • /
    • 2023
  • The paper proposes two hybrid metaheuristic optimization and artificial neural network (ANN) methods for the close prediction of the ultimate axial compressive capacity of concentrically loaded concrete filled double skin steel tube (CFDST) columns. Two metaheuristic optimization, namely genetic algorithm (GA) and particle swarm optimization (PSO), approaches enable the dynamic training architecture underlying an ANN model by optimizing the number and sizes of hidden layers as well as the weights and biases of the neurons, simultaneously. The former is termed as GA-ANN, and the latter as PSO-ANN. These techniques utilize the gradient-based optimization with Bayesian regularization that enhances the optimization process. The proposed GA-ANN and PSO-ANN methods construct the predictive ANNs from 125 available experimental datasets and present the superior performance over standard ANNs. Both the hybrid GA-ANN and PSO-ANN methods are encoded within a user-friendly graphical interface that can reliably map out the accurate ultimate axial compressive capacity of CFDST columns with various geometry and material parameters.