• Title/Summary/Keyword: CFD-based simulation

Search Result 540, Processing Time 0.023 seconds

Three-dimensional numerical modeling of sediment-induced density currents in a sedimentation basin (3차원 수치모의를 통한 침사지에서의 부유사 밀도류 해석)

  • An, Sang Do;Kim, Gi-Ho;Park, Won Cheol
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.27 no.3
    • /
    • pp.383-394
    • /
    • 2013
  • A sedimentation basin is used to remove suspended sediments which can cause abrasive and erosive wear on hydraulic turbines of hydropower plants. This sediment erosion not only decreases efficiency of the turbine but also increases maintenance costs. In this study, the three-dimensional numerical simulations were carried out on the overseas hydropower project. The simulations of flow and suspended sediment concentration were obtained using FLOW-3D computational fluid dynamics code. The simulations provide removal efficiency of a sedimentation basin based on particle sizes. The influence of baffles on the flow field and the removal efficiency of suspended sediments in the sedimentation basin has been investigated. This paper also provides the numerical simulations for sediment-induced density currents that may occur in the sedimentation basin. The simulation results indicate that the formation of density currents decreases the removal efficiency. When a baffle is installed in the sedimentation basin, the baffle provides intensive settling zones resulting in increasing the sediments settling. Thus the enhanced removal efficiency can be achieved by installing the baffle inside the sedimentation basin.

Unsteady Simulations of the Flow in a Swirl Generator, Using OpenFOAM

  • Petit, Olivier;Bosioc, Alin I.;Nilsson, Hakan;Muntean, Sebastian;Susan-Resiga, Romeo F.
    • International Journal of Fluid Machinery and Systems
    • /
    • v.4 no.1
    • /
    • pp.199-208
    • /
    • 2011
  • This work presents numerical results, using OpenFOAM, of the flow in the swirl flow generator test rig developed at Politehnica University of Timisoara, Romania. The work shows results computed by solving the unsteady Reynolds Averaged Navier Stokes equations. The unsteady method couples the rotating and stationary parts using a sliding grid interface based on a GGI formulation. Turbulence is modeled using the standard k-${\varepsilon}$ model, and block structured wall function ICEM-Hexa meshes are used. The numerical results are validated against experimental LDV results, and against design velocity profiles. The investigation shows that OpenFOAM gives results that are comparable to the experimental and design profiles. The unsteady pressure fluctuations at four different positions in the draft tube is recorded. A Fourier analysis of the numerical results is compared whit that of the experimental values. The amplitude and frequency predicted by the numerical simulation are comparable to those given by the experimental results, though slightly over estimated.

Numerical Prediction of Ship Motions in Wave using RANS Method (RANS 방법을 이용한 파랑 중 선박운동 해석)

  • Park, Il-Ryong;Kim, Jin;Kim, Yoo-Chul;Kim, Kwang-Soo;Van, Suak-Ho;Suh, Sung-Bu
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.50 no.4
    • /
    • pp.232-239
    • /
    • 2013
  • This paper provides the structure of a Reynolds Averaged Navier-Stokes(RANS) based simulation method and its validation results for the ship motion problem. The motion information of the hull computed from the equations of motion is considered in the momentum equations as the relative fluid motions with respect to a non-inertial coordinates system. A finite volume method is used to solve the governing equations, while the free surface is captured by using a two-phase level-set method and the realizable k-${\varepsilon}$ model is used for turbulence closure. For the validation of the present numerical approach, the numerical results of the resistance and motion tests for DTMB 5415 at two ship speeds are compared against available experimental data.

Optimization Design of Stainless Steel Stamping Multistage Pump Based on Orthogonal Test

  • Weidong, Shi;Chuan, Wang;Weigang, Lu;Ling, Zhou;Li, Zhang
    • International Journal of Fluid Machinery and Systems
    • /
    • v.3 no.4
    • /
    • pp.309-314
    • /
    • 2010
  • Stainless steel stamping multistage pump has become the mainstream of civil multi-stage pump. Combined with the technological features of stamping and welding pump, the studies of design for hydraulic parts of pump were come out. An $L_{18}$$3^7$)orthogonal experiment was designed with seven factors and three values including blade inlet angle, impeller outer diameter, guide vane blade number, etc. 18 plans were designed. The two stage of whole flow field on stainless steel stamping multistage pump at design point for design was simulated by CFD. According to the test result and optimization design with experimental research, the trends of main parameters which affect hydraulic performance were got. After being manufactured and tested, the efficiency of the optimal model pump reaches 61.36% and the single head is more than 4.8 m. Compared with the standard efficiency of 53%, the design of the stainless steel stamping pump is successful. The result would be instructive to the design of Stainless steel stamping multistage pump designed by the impeller head maximum approach.

A Study on the Optimal Design According to the Piston Shape of the 3/8 Hydraulic Quick Coupler (3/8" 유압 퀵 커플러의 피스톤형상을 고려한 최적설계에 관한 연구)

  • Kim, Nam-Yong;Wu, Yu-Ting;Qin, Zhen;Cho, Yong-Min;Lyu, Sung-Ki
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.2
    • /
    • pp.66-71
    • /
    • 2021
  • A hydraulic quick coupler is a component used to easily connect or disconnect pipes or hoses that transfer high pressure fluid without leakage in various mechanical devices. In this study, to obtain an optimal design of a 3/8" hydraulic quick coupler, the effect of different shapes of the internal piston on the internal flow characteristics of the coupler was analyzed and evaluated through numerical analysis based on computational fluid dynamics. Subsequently, the optimal shape design of the internal piston was obtained by comparing the flow characteristics results such as velocity distribution, temperature distribution, and the pressure drop of the hydraulic quick coupler.

Optimal fin planting of splayed multiple cross-sectional pin fin heat sinks using a strength pareto evolutionary algorithm 2

  • Ramphueiphad, Sanchai;Bureerat, Sujin
    • Advances in Computational Design
    • /
    • v.6 no.1
    • /
    • pp.31-42
    • /
    • 2021
  • This research aims to demonstrate the optimal geometrical design of splayed multiple cross-sectional pin fin heat sinks (SMCSPFHS), which are a type of side-inlet-side-outlet heat sink (SISOHS). The optimiser strength Pareto evolutionary algorithm2 (SPEA2)is employed to explore a set of Pareto optimalsolutions. Objective functions are the fan pumping power and junction temperature. Function evaluations can be accomplished using computational fluid dynamics(CFD) analysis. Design variablesinclude pin cross-sectional areas, the number of fins, fin pitch, thickness of heatsink base, inlet air speed, fin heights, and fin orientations with respect to the base. Design constraints are defined in such a way as to make a heat sink usable and easy to manufacture. The optimum results obtained from SPEA2 are compared with the straight pin fin design results obtained from hybrid population-based incremental learning and differential evolution (PBIL-DE), SPEA2, and an unrestricted population size evolutionary multiobjective optimisation algorithm (UPSEMOA). The results indicate that the splayed pin-fin design using SPEA2 issuperiorto those reported in the literature.

Wind flow modification by a jet roof for mitigation of snow cornice formation

  • Kumar, Ganesh;Gairola, Ajay;Vaid, Aditya
    • Wind and Structures
    • /
    • v.32 no.2
    • /
    • pp.115-126
    • /
    • 2021
  • The snow cornice mass on the formation zone had triggered avalanches which led to the loss of human life and property. Snow cornice is formed due to flow separation on the leeward side. Effect of lee slope is more prominent in the formation of snow cornices as compared to the windward slope. The analysis of wind flow pattern has been carried out to evaluate the performance of a jet roof. Computational Fluid Dynamics (CFD) analysis of wind flow over a 2D hill model was carried out using RNG based k-∈ turbulence models available in ANSYS Fluent. Effect of varying leeward hill slope (1:2 to 1:6) on flow separation for the given windward slope was observed and a critical slope of 1:4 was found at which the separation zone ceased to exist. The modification of wind flow over a hill due to the installation of jet roof was simulated. It was observed that jet roof had significantly modified the wind flow pattern around hill ridgeline and ultimately snow cornice formation had mitigated. The results of the wind flow pattern were validated with the wind data collected at the experimental site, Banihal Top (Jammu and Kashmir, India). The wind flow simulation over the hill and mitigation of cornice formation by the jet roof has been explained in the present paper.

The information system concept for thermal monitoring of a spent nuclear fuel storage container

  • Svitlana Alyokhina
    • Nuclear Engineering and Technology
    • /
    • v.55 no.10
    • /
    • pp.3898-3906
    • /
    • 2023
  • The paper notes that the most common way of handling spent nuclear fuel (SNF) of power reactors is its temporary long-term dry storage. At the same time, the operation of the dry spent fuel storage facilities almost never use the modern capabilities of information systems in safety control and collecting information for the next studies under implementation of aging management programs. The author proposes a structure of an information system that can be implemented in a dry spent fuel storage facility with ventilated storage containers. To control the thermal component of spent fuel storage safety, a database structure has been developed, which contains 5 tables. An algorithm for monitoring the thermal state of spent fuel was created for the proposed information system, which is based on the comparison of measured and forecast values of the safety criterion, in which the level of heating the ventilation air temperature was chosen. Predictive values of the safety criterion are obtained on the basis of previously published studies. The proposed algorithm is an implementation of the information function of the system. The proposed information system can be used for effective thermal monitoring and collecting information for the next studies under the implementation of aging management programs for spent fuel storage equipment, permanent control of spent fuel storage safety, staff training, etc.

Development of scaling approach based on experimental and CFD data for thermal stratification and mixing induced by steam injection through spargers

  • Xicheng Wang;Dmitry Grishchenko;Pavel Kudinov
    • Nuclear Engineering and Technology
    • /
    • v.56 no.3
    • /
    • pp.1052-1065
    • /
    • 2024
  • Advanced Pressurized Water Reactors (APWRs) and Boiling Water Reactors (BWRs) employ a suppression pool as a heat sink to prevent containment overpressure. Steam can be discharged into the pool through multi-hole spargers or blowdown pipes in both normal and accident conditions. Direct Contact Condensation (DCC) creates sources of momentum and heat. The competition between these two sources determines the development of thermal stratification or mixing of the pool. Thermal stratification is of safety concern as it reduces the cooling capability compared to a completely mixed pool condition. In this work we develop a scaling approach to prediction of the thermal stratification in a water pool induced by steam injection through spargers. Experimental data obtained from large-scale pool tests conducted in the PPOOLEX and PANDA facilities, as well as simulation results obtained using validated codes are used to develop the scaling. Two injection orientations, namely radial injection through multi-hole Sparger Head (SH) and vertical injection through Load Reduction Ring (LRR), are considered. We show that the erosion rate of the cold layer can be estimated using the Richardson number. In this work, scaling laws are proposed to estimate both the (i) transient erosion velocity and (ii) the stable position of the thermocline. These scaling laws are then implemented into a 1D model to simulate the thermal behavior of the pool during steam injection through the sparger.

Active control of flow around a 2D square cylinder using plasma actuators (2차원 사각주 주위 유동의 플라즈마 능동제어에 대한 연구)

  • Paraskovia Kolesova;Mustafa G. Yousif;Hee-Chang Lim
    • Journal of the Korean Society of Visualization
    • /
    • v.22 no.2
    • /
    • pp.44-54
    • /
    • 2024
  • This study investigates the effectiveness of using a plasma actuator for active control of turbulent flow around a finite square cylinder. The primary objective is to analyze the impact of plasma actuators on flow separation and wake region characteristics, which are critical for reducing drag and suppressing vortex-induced vibrations. Direct Numerical Simulation (DNS) was employed to explore the flow dynamics at various operational parameters, including different actuation frequencies and voltages. The proposed methodology employs a neural network trained using the Proximal Policy Optimization (PPO) algorithm to determine optimal control policies for plasma actuators. This network is integrated with a computational fluid dynamics (CFD) solver for real-time control. Results indicate that this deep reinforcement learning (DRL)-based strategy outperforms existing methods in controlling flow, demonstrating robustness and adaptability across various flow conditions, which highlights its potential for practical applications.