• 제목/요약/키워드: CFD technique

검색결과 422건 처리시간 0.027초

안팎 형상이 비대칭인 쌍동선의 자항성능 CFD 해석에 관한 연구 (A Study on the Self-Propulsion CFD Analysis for a Catamaran with Asymmetrical Inside and Outside Hull Form)

  • 이종현;박동우
    • 해양환경안전학회지
    • /
    • 제30권1호
    • /
    • pp.108-117
    • /
    • 2024
  • 본 연구에서는 너클 라인이 다수 존재하면서 안팎 형상이 비대칭으로 설계된 특이점을 갖는 쌍동선의 자항성능을 예측하기 위해 CFD 해석을 수행하였고, 해석 기법에 따른 차이를 파악하기 위해 MRF(Moving Reference Frame) 기법과 SDM(Sliding Mesh) 기법을 적용하였다. MRF 기법을 적용한 경우에는 time step당 프로펠러를 1˚ 회전시켰고, SDM 기법의 경우 10˚, 5˚, 1˚씩 회전시키며 각 기법별 예측된 자항성능을 비교하였다. 자항점 추정을 위한 몇 가지 프로펠러 회전수에서의 해석 결과 중 프로펠러의 토크는 기법에 따른 차이가 거의 없었지만 추력 및 선체가 받는 저항은 MRF 기법보다는 SDM 기법을 적용했을 때 더 낮게, SDM 기법의 time step당 프로펠러 회전각이 작을수록 높게 계산되었다. 선형 내삽을 통해 추정된 자항점의 프로펠러 회전수, 추력, 토크와 실선 확장법을 사용해 추정된 실선의 전달동력, 반류 계수, 추력 감소 계수 및 프로펠러 회전수도 동일한 경향을 보였으며, 대부분의 자항효율은 반대의 경향을 보였다. 프로펠러 후류의 경우 MRF 기법을 적용했을 때 정확도가 떨어졌고, SDM 기법의 time step당 프로펠러 회전각에 따라 표현되는 후류의 차이는 거의 없었다.

A Numerical Study on Cavitation Suppression Using Local Cooling

  • Zhang, Yuan-Yuan;Sun, Xiao-Jing;Huang, Dian-Gui
    • International Journal of Fluid Machinery and Systems
    • /
    • 제3권4호
    • /
    • pp.292-300
    • /
    • 2010
  • This study strives to develop an effective strategy to inhibit cavitation inception on hydrofoils by using local cooling technique. By setting up a temperature boundary condition and cooling a small area on the upper surface of a hydrofoil, the fluid temperature around the cooling surface will be decreased and thereby the corresponding liquid saturation pressure will drop below the lowest absolute pressure within the flow field. Hence, cavitation can never occur. In this paper, a NACA0015 hydrofoil at $4^{\circ}$ angle of attack was numerically investigated to verify the effectiveness of the proposed technique. The CFD results indicate that the cooling temperature and the cooling surface roughness are the critical factors affecting the success of such technique used for cavitation suppression.

Comparison of various k-ε models and DSM applied to flow around a high-rise building - report on AIJ cooperative project for CFD prediction of wind environment -

  • Mochida, A.;Tominaga, Y.;Murakami, S.;Yoshie, R.;Ishihara, T.;Ooka, R.
    • Wind and Structures
    • /
    • 제5권2_3_4호
    • /
    • pp.227-244
    • /
    • 2002
  • Recently, the prediction of wind environment around a building using Computational Fluid Dynamics (CFD) technique comes to be carried out at the practical design stage. However, there have been very few studies which examined the accuracy of CFD prediction of flow around a high-rise building including the velocity distribution at pedestrian level. The working group for CFD prediction of wind environment around building, which consists of researchers from several universities and private companies, was organized in the Architectural Institute of Japan (AIJ) considering such a background. At the first stage of the project, the working group planned to carry out the cross comparison of CFD results of flow around a high rise building by various numerical methods, in order to clarify the major factors which affect prediction accuracy. This paper presents the results of this comparison.

CFD모사 기법을 이용한 관내 혼화장치내 흐름 특성 평가 (Evaluation of Flow Characteristics within In-Line Mixer for Water Treatment using CFD Technique)

  • 박대진;박영오;박노석;김성수;왕창근
    • 상하수도학회지
    • /
    • 제22권3호
    • /
    • pp.351-358
    • /
    • 2008
  • The modified in-line mixer which was suggested in this study for small water treatment facilities was evaluated on the performance of coagulation. For the objectives of this research, computational fluid dynamics(CFD) simulation was applied for analysis of flow characteristics within the modified in-line mixer. For verifying the results of CFD simulation, wet tests for the pilot plant were conducted. The wet test was to measure the actual coagulant dispersion distribution on the overall cross-section at a distance of 5.5D from the chemical injection point. From the results of CFD simulation and wet test, it was shown that the coagulant dispersion within the modified in-line mixer was occurred more uniformly than within the existing PDM(Pump diffusion Mixer). The results have confirmed the modified in-line mixer had several advantages compared with the existing PDM in terms of dispersion efficiency.

CFD/Kirchhoff 적분 방법을 이용한 자동차 타이어의 Air-Pumping 소음 예측 (CFD/Kirchhoff Integral Method for the Prediction of the Air-Pumping Noise by a Car Tyre)

  • 김성태;이수갑
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2004년도 추계학술대회논문집
    • /
    • pp.916-919
    • /
    • 2004
  • The monopole theory has long been used to model air-pumped effect from the elastic cavities in car tire. This approach models the change of an air as a piston moving backward and forward on a spring and equates local air movements exactly with the volume changes of the system. Thus, the monopole theory has a restricted domain of applicability due to the usual assumption of a small amplitude acoustic wave equation and acoustic monopole theory. This paper describes an approach to predict the air-pumping noise of a car ave with CFD/Kirchhoff integral method. The type groove is simply modeled as piston-cavity-sliding door geometry and with the aid of CFD technique flow properties in the groove of rolling car tyre are acquired. And these unsteady flow data are used as a air-pumping source in the next Cm calculation of full tyre-road geometry. Acoustic far field is predicted from Kirchhoff integral method by using unsteady flow data in space and time, which is provided by the CFD calculation of full tyre-road domain. This approach can cover the non-linearity of acoustic monopole theory with the aid of using Non-linear governing equation in CFD calculation. The method proposed in this paper is applied to the prediction of air-pumping noise of modeled car tyre and the predicted results are qualitatively compared with the experimental data.

  • PDF

The Prediction of Hydrodynamic Forces Acting on Ship Hull in Laterally Berthing Maneuver Using CFD

  • Lee, Yun-Sok
    • 한국항해항만학회지
    • /
    • 제27권3호
    • /
    • pp.253-258
    • /
    • 2003
  • To evaluate the unsteady motion in laterally berthing maneuver, it is necessary to grasp very clearly the magnitude and properties of the hydrodynamic forces acting on ship hull in shallow water. In this study, numerical calculation was made to investigate quantitatively the hydrodynamic force according to the water depth for Wigley model using the CFD (Computational Fluid Dynamics) technique. Comparing the computational results to the experimental ones, the validity of the CFD method was verified. The numerical solutions evaluated the hydrodynamic force with good accuracy, and then captured the features of the flow field around the ship in detail. The transitional lateral force in a state ranging from rest to uniform motion is modeled by using the concept of the circulation.

CFD를 이용한 KRISO 추진효율 향상 장치(K-duct)의 성능 해석 (CFD Analysis of Performance of KRISO Devices (K-DUCT) for Propulsion Efficiency Improvement)

  • 서성부
    • 한국해양공학회지
    • /
    • 제31권3호
    • /
    • pp.183-188
    • /
    • 2017
  • This paper provides numerical results for the estimation of the efficiency of KRISO energy saving devices in the design stage. A finite volume method is used to solve Reynolds averaged Navier-Stokes (RANS) equations, where the SST k-$\omega$ model is selected for turbulence closure. The propeller rotating motion is determined using a rigid body motion (RBM) scheme, which is called a sliding mesh technique. The numerical analysis focuses on predicting the power reduction by the designed KRISO devices (K-DUCT) under a self-propulsion condition. The present numerical results show good agreement with the available experimental data. Finally, it is concluded that CFD can be a useful method, along with model tests, for assessing the performance of energy saving devices for propulsion efficiency improvement.

고온 고압 환경에서 가변추력기용 핀틀의 열전달 계수에 대한 수치적 연구 및 2D 실험 (Numerical Analysis and 2-D Experiment of Heat Transfer Coefficient on the Pintle of a Controllable Thruster Nozzle)

  • 박순상;문영기;곽재수
    • 항공우주시스템공학회지
    • /
    • 제6권4호
    • /
    • pp.24-28
    • /
    • 2012
  • In this paper, 2-D experiment and steady-state computational fluid analysis were conducted for measuring the hear transfer coefficient of pintle type controllable thruster in high pressure and temperature. In case of 2-D experiment, transient liquid crystal technique was used for measuring heat transfer coefficient for the 2-D pintle model. The experimental result was used to validate the CFD result. The CFD results well predicted the heat transfer coefficient on the pintle surface except the nozzle downstream region, where the results by CFD was higher than experimental results. The CFD results were also compared with the result by Bartz equation and the it was shown that the Bartz equation overestimated the heat transfer coefficient on the nozzle throat as much as 80%.

CFD를 이용한 컨테이너선의 Post Swirl Stator 설계기법 (Design Technique of Post Swirl Stator in Container Vessels by CFD)

  • 김기현;송인행;최순호
    • 대한조선학회논문집
    • /
    • 제44권2호
    • /
    • pp.93-100
    • /
    • 2007
  • Post swirl stator is an energy saving device to recover rotational energy of the propeller. To optimize the performance of post swirl stator in container vessels, computational fluid dynamics using body force method was introduced. A commercial code Fluent was used in conjunction with body force distributed on the surface of actuator disk which is located in the propeller plane to optimize pitch angle of the post swirl stator blade. This study showed that CFD is an important tool to simulate flow behind ship with propeller, rudder and post swirl stator.

비정렬 셀 중심방법 및 경계면포착법을 사용하는 3차원 유동해석코드(PowerCFD)에 적합한 HR 해법에 관한 연구 (STUDY ON HIGH RESOLUTION SCHEMES SUITABLE FOR AN 3-D CFD CODE(POWERCFD) USING UNSTRUCTURED CELL-CENTERED METHOD AND INTERFACE CAPTURING METHOD)

  • 명현국;김종은
    • 한국전산유체공학회지
    • /
    • 제13권1호
    • /
    • pp.7-13
    • /
    • 2008
  • Several high resolution schemes such as OSHER, MUSCL, SMART, GAMMA, WACEB and CUBISTA are comparatively studied with respect to the accurate capturing of fluid interfaces throughout the application to two typical test cases of a translation test and a collapsing water column problem with a return wave. It is accomplished by implementing the high resolution schemes in the in-house CFD code(PowerCFD) for computing 3-D flow with an unstructured cell-centered method and an interface capturing method, which is based on the finite-volume technique and fully conservative. The calculated results show that SMART scheme gives the best performance with respect to accuracy and robustness.