• Title/Summary/Keyword: CFD system

Search Result 1,613, Processing Time 0.025 seconds

Development of Multiphase Pump for Offshore Plant (해양플랜트용 다상유동 펌프 개발)

  • Kim, Joonhyung;Choi, Youngseok;Yoon, Joonyong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.2
    • /
    • pp.183-190
    • /
    • 2014
  • A multiphase pump was developed in this study. The optimum multiphase pump design was arrived at, and the interactions among the different geometric configurations were explained by applying numerical analysis and the DOE (design of experiments) method. First, we designed the base model to meet the specifications. Then, we defined the design parameters related to the meridional plane and the blade angle. Each design parameter was used for generating experiment sets, and numerical analyses were performed on these sets. Finally, the optimized design was selected based on the results of the DOE analysis. The numerical optimization resulted in the optimum model having higher efficiency than the base model. In addition, performance degradation due to changes in the GVF (gas volume fraction) is discussed.

CFD Analysis of Aerodynamic Characteristics of a BWB UCAV configuration with Transition effect (천이효과를 고려한 BWB UCAV 형상의 공력 특성 전산해석)

  • Jo, Young-Hee;Chang, Kyoungsik;Sheen, Dong-Jin;Park, Soo Hyung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.7
    • /
    • pp.535-543
    • /
    • 2014
  • A computational simulation for a nonslender BWB UCAV configuration with rounded leading edge and span of 1.0m was performed to analyze its aerodynamic characteristics. The freestream is 50m/s over -4 to 26 degree A.o.A.s. Reynolds number based on the mean chord length is $1.25{\times}10^6$. 3D multi block hexahedral grids are used which allow good grid quality and ease to capture boundary layer. ${\gamma}-Re_{\theta}$ model as well as $k-{\omega}$ SST model is employed to assess the effect of transition for flow behavior. Drag and lift of the UCAV were well predicted while $C_M$ is under predicted at high angle of attacks and influenced by the turbulence models strongly. After assessing pressure distribution, skin friction lines and velocity field around the UCAV configuration, it was found that transition effect should be considered to enhance the prediction of aerodynamic behavior by a vortical flowfield.

Performance Analysis of Heat Sink for LED Downlight Using Lumped Parameter Model (집중변수모델을 이용한 LED조명등 방열기구의 성능분석)

  • Kim, Euikwang;Jo, Youngchul;Yi, Seungshin;An, Younghoon
    • Journal of Energy Engineering
    • /
    • v.26 no.2
    • /
    • pp.64-72
    • /
    • 2017
  • The performance analysis of the 70 W class LED lighting system suitable for the Middle East environment was performed using the lumped parameter model. The LED light is composed of a heating substrate, a heat pipe, and a heat sink. We divided the LED lights into four objects and applied energy equilibrium to each of them to establish four lumped nonlinear differential equations. The solution of the simultaneous equations was obtained by the Runge-Kutta method. Convective heat transfer coefficients of the lumped model were obtained by multidimensional CFD analysis. As a result of comparison with experiment, it was found that the heating substrate had an error of $1.5^{\circ}C$ and the upper heat sink had an error of $1.8^{\circ}C$ and the relative error was about 0.6 %. Using this model, temperature distribution analysis was performed for normal operating conditions with an ambient temperature of $55^{\circ}C$, with sunlight only, with abnormal operating conditions with sunlight, and without an upper heat sink.

Computational analysis of pollutant dispersion in urban street canyons with tree planting influenced by building roof shapes

  • Bouarbi, Lakhdar;Abed, Bouabdellah;Bouzit, Mohamed
    • Wind and Structures
    • /
    • v.23 no.6
    • /
    • pp.505-521
    • /
    • 2016
  • The objective of this study is to investigate numerically the effect of building roof shaps on wind flow and pollutant dispersion in a street canyon with one row of trees of pore volume, $P_{vol}=96%$. A three-dimensional computational fluid dynamics (CFD) model is used to evaluate air flow and pollutant dispersion within an urban street canyon using Reynolds-averaged Navier-Stokes (RANS) equations and the Explicit Algebraic Reynolds Stress Models (EARSM) based on k-${\varepsilon}$ turbulence model to close the equation system. The numerical model is performed with ANSYS-CFX code. Vehicle emissions were simulated as double line sources along the street. The numerical model was validated by the wind tunnel experiment results. Having established this, the wind flow and pollutant dispersion in urban street canyons (with six roof shapes buildings) are simulated. The numerical simulation results agree reasonably with the wind tunnel data. The results obtained in this work, indicate that the flow in 3D domain is more complicated; this complexity is increased with the presence of trees and variability of the roof shapes. The results also indicated that the largest pollutant concentration level for two walls (leeward and windward wall) is observed with the upwind wedge-shaped roof. But the smallest pollutant concentration level is observed with the dome roof-shaped.

Drag reduction for payload fairing of satellite launch vehicle with aerospike in transonic and low supersonic speeds

  • Mehta, R.C.
    • Advances in aircraft and spacecraft science
    • /
    • v.7 no.4
    • /
    • pp.371-385
    • /
    • 2020
  • A forward-facing aerospike attached to a payload fairing of a satellite launch vehicle significantly alters its flowfield and decreases the aerodynamic drag in transonic and low supersonic speeds. The present payload fairing is an axisymmetric configuration and consists of a blunt-nosed body along with a conical section, payload shroud, boat tail and followed by a booster. The main purpose of the present numerical simulations is to evaluate flowfield and assess the performance of aerodynamic drag coefficient with and without aerospike attached to a payload fairing of a typical satellite launch vehicle in freestream Mach number range 0.8 ≤ M ≤ 3.0 and freestream Reynolds number range 33.35 × 106/m ≤ Re ≤ 46.75 × 106/m whichincludes the maximum aerodynamic drag and maximum dynamic conditions during ascent flight trajectory of the satellite launch vehicle. A numerical simulation has been carried out to solve time-dependent compressible turbulent axisymmetric Reynolds-averaged Navier-Stokes equations. The closure of the system of equations is achieved using the Baldwin-Lomax turbulence model. The aerodynamic drag reduction mechanism is analysed employing numerical results such as velocity vector plots, density and Mach contours in conjunction with the experimental flow visualization pictures. The variations of wall pressure coefficient over the payload fairing with and without aerospike are exhibiting different kind of flowfield characteristics in the transonic and low supersonic speeds. The numerically computed results are compared with schlieren pictures, oil flow patterns and measured wall pressure distributions and exhibit good agreement between them.

Numerical Prediction of Chamber Performance for OWC Wave Energy Converter (OWC 파력발전장치의 공기실 성능예측에 대한 수치적인 연구)

  • Jin, Ji-Yuan;Hyun, Beom-Soo;Liu, Zhen;Hong, Key-Yong
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.13 no.2
    • /
    • pp.91-98
    • /
    • 2010
  • The water elevation inside the air chamber and bi-directional air flow in the duct of Oscillating Water Column wave energy converter is one of the most important factors to evaluate the operating performance. The numerical wave tank based on the commercial software Fluent 6.2 in the present paper is employed to generate the incident waves. The numerical wave tank consists of the continuity equations, the Reynolds-averaged Navier-Stokes equations and the two-phase VOF function. The oscillating amplitude of water column in the chamber and bi-directional air flow in the duct installed on the top of the chamber are calculated, and compared with experimental data to verify the validation of the present NWT. The nozzle effects of the chamber-duct system on the relative amplitudes of the inner free water surface and air flow rate in the duct are investigated.

Study on Design of Darrieus-type Tidal Stream Turbine Using Parametric Study (파라메트릭 스터디를 통한 조류발전용 다리우스 터빈의 설계연구)

  • Han, Jun-Sun;Hyun, Beom-Soo;Choi, Da-Hye;Mo, Jang-Oh;Kim, Moon-Chan;Rhee, Shin-Hyung
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.13 no.4
    • /
    • pp.241-248
    • /
    • 2010
  • This paper deals with the performance analysis and design of the Darrieus-type vertical axis turbine to evaluate the effect of key design parameters such as number of blade, blade chord, pitch and camber. The commercial CFD software FLUENT was employed as an unsteady Reynolds-Averaged Navier-Stokes (RANS) solver with k-e turbulent model. Grid system was modelled by GAMBIT. Basic numerical methodology of the present study is appeared in Jung et al. (2009). Two-dimensional analysis was mostly adopted to avoid the barrier of massive calculation required for parametric study. It was found that the highly efficient turbine model could be designed through the optimization of design parametrrs.

Flow Visualization and Calculation at the Outlet of Propellant Tank Pressurizing Gas Injector (추진제탱크 가압용 인젝터 출구에서의 유동가시화 및 해석)

  • Kwon, Oh-Sung;Han, Sang-Yeop;Kwon, Ki-Jung;Chung, Yong-Cahp
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.1
    • /
    • pp.73-79
    • /
    • 2010
  • Propellant tank pressurizing gas injector is used in the pressurization system of liquid propellant rocket to reduce incoming gas velocity and distribute the gas in the tank. Temperature distribution in the propellant tank ullage is varied according to the gas injector shape, and it has influence on the required pressurant gas and thermal phenomena in the tank. In this paper, diffuser type gas injector was studied to make the ullage have stratified temperature distribution. Injected gas flow at the outlet of prototype diffuser was visulized using particle image velocimetry method and it was compared with the results of calculation. Calculation was well agreed with measurement and was used as an inlet condition of propellant tank ullage calculation.

Design of Supersonic Wind Tunnel for Analysis of Flow over a Backward Facing Step with Slot Injection (슬롯 분사가 있는 후향계단 유동장 분석을 위한 초음속풍동 설계)

  • Kim, Ick-Tae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.11
    • /
    • pp.363-367
    • /
    • 2016
  • A test section of a supersonic wind tunnel was designed for the analysis of flow characteristics over a backward-facing step with Mach 1.0 slot injection in a supersonic flow of Mach 2.5. The cavity flow of a high-speed vehicle is very complex at supersonic speed, so it is necessary to do experiments using supersonic wind tunnels to verify numerical analysis methods. The previous 2D symmetrical nozzle was replaced with an asymmetrical nozzle. The inviscid nozzle contour was designed using Method of Characteristics (MOC), and the boundary layer thickness correction was reflected by experimental data from the wind tunnel. The results were compared with a CFD analysis. The PID control system was changed to be based on the change of tank pressure. This improved the control efficiency, and the run times of supersonic flow increased by about 1 second. The flow characteristics over a backward facing step with slot injection were visualized by a Schlieren device. This equipment will be used for an experimental study of the film cooling effectiveness over a cavity with various velocities, mass flows, and temperatures.

Evaluation of wind loads and wind induced responses of a super-tall building by large eddy simulation

  • Lu, C.L.;Li, Q.S.;Huang, S.H.;Tuan, Alex Y.;Zhi, L.H.;Su, Sheng-chung
    • Wind and Structures
    • /
    • v.23 no.4
    • /
    • pp.313-350
    • /
    • 2016
  • Taipei 101 Tower, which has 101 stories with height of 508 m, is located in Taipei where typhoons and earthquakes commonly occur. It is currently the second tallest building in the world. Therefore, the dynamic performance of the super-tall building under strong wind actions requires particular attentions. In this study, Large Eddy Simulation (LES) integrated with a new inflow turbulence generator and a new sub-grid scale (SGS) model was conducted to simulate the wind loads on the super-tall building. Three-dimensional finite element model of Taipei 101 Tower was established and used to evaluate the wind-induced responses of the high-rise structure based on the simulated wind forces. The numerical results were found to be consistent with those measured from a vibration monitoring system installed in the building. Furthermore, the equivalent static wind loads on the building, which were computed by the time-domain and frequency-domain analysis, respectively, were in satisfactory agreement with available wind tunnel testing results. It has been demonstrated through the validation studies that the numerical framework presented in this paper, including the recommended SGS model, the inflow turbulence generation technique and associated numerical treatments, is a useful tool for evaluation of the wind loads and wind-induced responses of tall buildings.