• 제목/요약/키워드: CFD flow analysis

검색결과 1,846건 처리시간 0.026초

3차원 CFD를 사용한 환상 실의 누설량 예측 (Prediction of Annular Type Seal Leakage Using 3D CFD)

  • 석희수;하태웅
    • Tribology and Lubricants
    • /
    • 제25권3호
    • /
    • pp.150-156
    • /
    • 2009
  • Precise leakage prediction for annular type seals of turbomachinery is necessary for enhancing their efficiency and various prediction methods have been developed. As the seal passage is designed intricately, the analysis based on Bulk-flow concept which has been mainly used in predicting seal leakage is limited. In order to improve the seal leakage prediction, full Navier-Stokes Equations with turbulent model derived in the seal flow passage have to be solved. In this study, 3D CFD (Computational Fluid Dynamics) analysis has been performed for predicting leakage of various non-contact type anular seals using FLUENT. Compared to the results by Bulk-flow model analysis, experiment, and 2D CFD analysis, the result of 3D CFD analysis shows improvement in predicting seal leakage, especially for the parallel grooved pump seal.

CFD Analysis of Cavitation Phenomena in Mixed-Flow Pump

  • Sedlar, Milan;Sputa, Oldrich;Komarek, Martin
    • International Journal of Fluid Machinery and Systems
    • /
    • 제5권1호
    • /
    • pp.18-29
    • /
    • 2012
  • This paper deals with the CFD analysis of cavitating flow in the mixed-flow pump with the specific speed of 1.64 which suffers from a high level of noise and vibrations close to the optimal flow coefficient. The ANSYS CFX package has been used to solve URANS equations together with the Rayleigh-Plesset model and the SST-SAS turbulence model has been employed to capture highly unsteady phenomena inside the pump. The CFD analysis has provided a good picture of the cavitation structures inside the pump and their dynamics for a wide range of flow coefficients and NPSH values. Cavitation instabilities were detected at 70% of the optimal flow coefficient close to the NPSH3 value (NPSH3 is the net positive suction head required for the 3% drop of the total head of the pump).

플라즈마 피치에 따른 150mm 샤워헤드에 대한 CFD 유동해석 (CFD flow analysis of 150mm shower heads depending on plasma pitch)

  • 김동화;김호범;조종두;정대교
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.585-589
    • /
    • 2008
  • This study is performed to analyze the fluid flow about 150mm shower heads of semiconductor device. Under the air pressure, the ideal gas of moving fluid is injected as 5m/s velocity into inlet of shower heads and the flow distribution in shower heads is measured according to pitch of plasma distribution device. As results, the maximum and minimum value of fluid velocity are investigated with their position. The velocity values at outlet are also studied. From two experiment using the plasma distribution device, the results of CFD are compared with the experimental results. That results shows stable flow of fluid in that case of corrected design from CFD.

  • PDF

선회유동을 이용한 마이크로버블 발생기의 다상유동 전산유체역학 해석 (Multiphase CFD Analysis of Microbubble Generator using Swirl Flow)

  • 윤신일;김현수;김진광
    • 열처리공학회지
    • /
    • 제35권1호
    • /
    • pp.27-32
    • /
    • 2022
  • Microbubble technology has been widely applied in various industrial fields. Recently, research on many types of microbubble application technology has been conducted experimentally, but there is a limit in deriving the optimal design and operating conditions. Therefore, if the computational fluid dynamics (CFD) analysis of multiphase flow is used to supplement these experimental studies, it is expected that the time and cost required for prototype production and evaluation tests will be minimized and optimal results will be derived. However, few studies have been conducted on multiphase flow CFD analysis to interpret fluid flow in microbubble generators using swirl flow. In this study, CFD simulation of multiphase flow was performed to analyze the air-water mixing process and fluid flow characteristics in a microbubble generator with a dual-chamber structure. Based on the simulation results, it was confirmed that a negative pressure was formed on the central axis of rotation due to the strong swirling flow. And it could be seen that the air inside the suction tube was introduced into the inner chamber of the microbubble generator. In addition, as the high-speed mixed fluid collided with external water sucked by the negative pressure near the outlet, a large amount of microbubbles was ejected due to the shear force between the two flows flowing in opposite directions.

CFD를 사용한 복잡한 형상을 갖는 래버린스 실의 누설량 예측 (Prediction of Combination-Type-Staggered-Labyrinth Seal Leakage Using CFD)

  • 하태웅
    • Tribology and Lubricants
    • /
    • 제22권2호
    • /
    • pp.66-72
    • /
    • 2006
  • Leakage reduction through annular type labyrinth seals of steam turbine is necessary for enhancing their efficiency and the precise prediction method of seal leakage is needed. In this study, numerical analysis for leakage prediction of the combination-type-staggered-labyrinth seal has been carried out using FLUENT 6 which is commercial CFD (Computational Fluid Dynamics) code based on FVM (Finite Volume Method) and SIMPLE algorism. The present CFD results are verified with the theoretical analysis based on Bulk-flow concept which has been mainly used in predicting seal leakage. Comparing with the result of Bulk-flow model analysis, the leakage result of CFD analysis shows good agreement within 7.1% error.

LNG선용 버터플라이밸브의 유동특성에 관한 연구 (제1부 : CFD해석과 실험결과의 비교) (Flow Characteristics of Cryogenic Butterfly Valve for LNG Carrier (Part 1 : CFD Analysis and its Comparison with Experimentation))

  • 김상완;최영도;김정환;이영호
    • 한국유체기계학회 논문집
    • /
    • 제11권2호
    • /
    • pp.13-19
    • /
    • 2008
  • Butterfly valves are widely used as control valves for industrial process. For the definition of optimum configuration of the valve, wide range of related studies has been actively conducted in the case of working fluids of water or air under the normal temperature. Recently, internal flow and performance characteristics of cryogenic butterfly valve for LNG carrier take a growing interest in the field of research and development. Therefore, present study is aimed to investigate the internal flow and performance characteristics of the cryogenic butterfly valve because the study result for the valve can be hardly found at present. Part 1 of this paper describes the study result of a butterfly valve model under the condition of the normal temperature. Succeeding Part 2 of this paper will describe the internal flow characteristics of a cryogenic butterfly valve for LNG carrier. The results of Part 1 show that pressure loss coefficients and flow rate coefficients obtained by the present experiment and CFD analysis agree well each other. Moreover, internal flow visualization for the valve by CFD analysis and PIV measurement have revealed complicated flow patterns of the internal flow field in detail.

Waterjet 선박추진용 사류펌프의 설계 및 성능해석 (Design and Performance Analysis of Mixed-Flow Pump: for Waterjet Marine Propulsion)

  • 황순찬;윤의수;오형우;최범석;박무룡;안종우
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2002년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.47-53
    • /
    • 2002
  • The hydraulic design optimization and performance analysis of mixed-flow pumps for waterjet marine vehicle propulsion has been carried out using mean streamline analysis and three-dimensional computational fluid dynamics (CFD) code. In the present study the conceptual design optimization has been formulated with a non-linear objective function to minimize the fluid dynamic losses and then the commercial CFD code was incorporated to allow for detailed flow dynamic phenomena in the pump system. New designed mixed-flow model pump has been tested in the laboratory. Predicted performance curves by the CFD code agree very well with experimental data for a newly designed mixed-flow pump over the normal operating conditions. The design and prediction methods presented herein can be used efficiently as a unified hydraulic design process of mixed-flow pumps for waterjet marine vehicle propulsion.

  • PDF

EXTENSION OF CFD CODES APPLICATION TO TWO-PHASE FLOW SAFETY PROBLEMS

  • Bestion, Dominique
    • Nuclear Engineering and Technology
    • /
    • 제42권4호
    • /
    • pp.365-376
    • /
    • 2010
  • This paper summarizes the results of a Writing Group on the Extension of CFD codes to two-phase flow safety problems, which was created by the Group for Analysis and Management of Accidents of the Nuclear Energy Agency' Committee on the Safety of Nuclear Installations (NEA-CSNI). Two-phase CFD used for safety investigations may predict small scale flow processes, which are not seen by system thermalhydraulic codes. However, the two-phase CFD models are not as mature as those in the single phase CFD and potential users need some guidance for proper application. In this paper, a classification of various modelling approaches is proposed. Then, a general multi-step methodology for using two-phase-CFD is explained, including a preliminary identification of flow processes, a model selection, and a verification and validation process. A list of 26 nuclear reactor safety issues that could benefit from investigations at the CFD scale is identified. Then, a few issues are analyzed in more detail, and a preliminary state-of-the-art is proposed and the remaining gaps in the existing approaches are identified. Finally, guidelines for users are proposed.

전산유동 해석을 이용한 수동의 유동 균질성 평가 (Estimation of Flow Uniformity in Water Tunnel by Using CFD Analysis)

  • 임영택;장조원;김문상
    • 한국항공운항학회지
    • /
    • 제12권3호
    • /
    • pp.13-24
    • /
    • 2004
  • It is easier to view flow visualization by using a water tunnel rather than a smoke wind tunnel because of low speed at same Reynolds number. Using a water tunnel also produces more definite flow visualization by the use of various color dyes. The flow uniformity in test section is very significant for accuracy of the test because most flow experiments elicit results through the installation of a model in uniform flow. The purpose of small-size desktop-type water tunnel is not to produce quantitative measurements, but rather to give a visualization of the fluid flow phenomenon. However, uniformity in the test section affects the accuracy of the results. Accordingly, this research estimates uniformity in a water tunnel test section by using the commercially available CFD code FLUENT. Results of the CFD analysis show that the flow uniformity of the test section is good.

  • PDF

3차원 유동해석을 통한 차량 배기소음 예측에 관한 연구 (Prediction of Vehicle Exhaust Noise using 3-Dimensional CFD Analysis)

  • 진봉용;이상호;조남효
    • 한국자동차공학회논문집
    • /
    • 제9권5호
    • /
    • pp.148-156
    • /
    • 2001
  • Computational Fluid Dynamics (CFD) analysis was carried out to investigate exhaust gas flow and acoustic characteristics in the exhaust system of a passenger car. Transient 3-dimensional flow field in the front and rear mufflers was simulated by CFD and far-field sound pressure was modeled by a simple monopole source method. Engine performance simulation was also performed to obtain the boundary condition of instantaneous fluid flow variation at the inlet of the exhaust system. Detailed exhaust gas flow characteristics such as velocity and pressure distribution inside the mufflers were presented and the pulsating pressure amplitude was compared at several positions in the exhaust system to deduce sound pressure level. The present method of the acoustic analysis coupled with CFD techniques would be very effective for the prediction of sound noise from vehicle exhaust systems although the effects of the inlet boundary condition and heat transfer on the accuracy of the prediction have to be validated through further studies.

  • PDF