• Title/Summary/Keyword: CFD code

Search Result 972, Processing Time 0.028 seconds

Effects of Carrier Air Supplying Parameter on the Internal Flow Characteristics of an Adaptor in Two-Fluid Nozzle (이유체노즐의 액체이송공기 공급방법에 따른 어뎁터 내부유동특성에 관한 해석적 연구)

  • Park, S.H.;Cho, M.H.;Kim, D.J.;Lee, J.K.;Rho, B.J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.65-70
    • /
    • 2008
  • The numerical simulation on the internal flow characteristics of the adaptor in a two-fluid nozzle has been performed to investigate the effects of carrier air supplying parameters using a commercial code. The four adaptor models with the different positions in the carrier air supplying port were considered at the fixed conditions of urea-water solution and carrier air supplying. As the results from the numerical analysis, the internal pressure of the adaptor was varied with the port position for carrier air supplying, and it shows lower pressure value than the atmospheric pressure. Consequently, the flowrate of urea-water solution issuing from the feeding injector with the adaptor varied up to 30% with the port positions for the carrier air supplying. When the carrier air is supplied from the side from the feeding injector axis and the upper part from the feeding injector tip, the flowrate of urea-water solution issuing from the feeding injector with the adaptor show higher value than other carrier air supplying conditions.

  • PDF

The Numerical Analysis of Non-Newtonian Flow through Branched and Stenotic Tube (CFD를 이용한 분지관.협착관의 비뉴턴 유체 해석)

  • Hwang, Do-Yeon;Ki, Min-Cheol;Han, Byeong-Yun;Park, Hyung-Koo
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.385-388
    • /
    • 2008
  • The objective of this paper is simulating blood flow through the branched and stenotic tube numerically. SC-Tetra, which is one of the commercial code using FVM method, was utilized for this analysis. The flow is assumed as an incompressible laminar flow with the additional condition of non-Newtonian fluid. As the constitutive equation for the fluid viscosity, the following models were solved with governing equations ; Cross Model, Modified Cross Model, Carreau Model and Carreau-Yasuda Model. Final goal was achieved to get analytic data about shear stress, at specific points, changing the geometry with various factors like the bifurcation angle, diameter of the branches, the ratio of stenosis, and etc. The material property of blood was referred from the related papers. Furthermore, to verify results they were compared with those of the published papers. There were some discrepancies based on the different solver and the different data post-processing method. However, many parameters like the location of low shear stress, which arised from bifurcation or stenosis, and the tendency of various factors were found to be very similar.

  • PDF

Thermal and Fluid Analysis on Air Distribution in a Elevator Car (엘리베이터 카 내부 기류분포에 관한 열 유동해석)

  • Chung, Kyung Taek;Yi, Chung Seob
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.1
    • /
    • pp.56-62
    • /
    • 2020
  • The purpose of this study is to observe the visualization of the flow field for air flow distributed in the car from the ventilation fan installed in the ceiling of the passenger elevator car through the numerical analysis using computational fluid dynamics. STAR-CCM+, which is a code used for the numerical analysis, was used to predict the airflow distribution inside the elevator car. The numerical analysis of the distribution of the air current in the elevator was carried out. As a result, the analysis results for each point and the visualization of the air current distribution and the temperature distribution in the elevator car and were obtained. It was found that heat transfer was actively occurring inside the car due to the influence of the flow field discharged from the ventilation vent installed in the ceiling in the elevator car, and especially the convection heat transfer of Model-2 was more active than that of Model-1. As a result, the temperature distribution inside the car was found to be relatively low. In addition, the temperature distribution at a cross-section of 1700mm height in the elevator car shows that Model-2 is the location of the ventilation vent which makes people feel more comfortable.

Research on the nasal airflow and heat and mass transfer (비강 내 공기유동과 열 및 물질전달에 관한 연구)

  • Kim, Sung-Kyun;Liem, Huynh Quang;Park, Joon-Hyung
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1479-1483
    • /
    • 2008
  • The three main physiological functions of nose are air-conditioning, filtering and smelling. Knowledge of airflow characteristics in nasal cavities is essential to understand the physiological and pathological aspects of nasal breathing. Several studies have utilized physical models of the healthy nasal cavity to investigate the relationship between nasal anatomy and airflow. In our laboratory, there have been a series of experimental investigations on the nasal airflow in normal and deformed nasal cavity models by PIV under both constant and periodic flow conditions. In this time, airflow inside normal nasal cavity is investigated numerically by the FVM general purpose code. The comparisons with PIV measurement are appreciated. Heat and humidity transfer is dealt numerically. Dense CT data and careful treatment of model surface under the ENT doctor’s advice provide more sophisticated cavity models for both PIV experiment and numerical grid system. Average and RMS velocity distributions have been obtained for inspirational and expirational nasal. Temperature distribution, heat and humidity transfer through the mucosa are obtained.

  • PDF

NUMERICAL SIMULATION ON CONTROL OF ENVIRONMENTAL VARIABLES FOR ENVIRONMENT REPRODUCTION SYSTEM USING OPENFOAM (OpenFOAM을 이용한 대규모 환경재현 시스템 내에서의 환경변수 제어 시뮬레이션)

  • Jeong, S.M.;Kagemoto, Hiroshi;Park, J.C.
    • Journal of computational fluids engineering
    • /
    • v.18 no.1
    • /
    • pp.43-48
    • /
    • 2013
  • The feasibility of a unique greenhouse, named as Gradient Biome, is now being examined extensively in the University of Tokyo. It is a large chamber (length:200m, width:50m, height:40m) in which the weather, such as temperature and humidity, of the tropical zone through to that of the frigid zone on the earth is reproduced with continuous gradient. In the Gradient Biome, ecosystems (mainly plants) corresponding to each weather are introduced and the possible responses of this ecosystems to the expected global warming are to be observed. Since one of the expected responses is the shift of the ecosystem(s) toward the region of suitable environment, there should be no artificial obstacles, which can prevent the shift, inside the Biome. This requirement is not so easy to be satisfied since the environment tends to be homogeneous. This paper presents the results of the numerical studies conducted to find the ways of how the temperature and humidity in the Gradient Biome could be reproduced. One of the contributed solvers of OpenFOAM, which is an open source physics simulation code, was modified and used for the numerical simulations.

Numerical study on the effect of three-dimensional unsteady tunnel entry flow characteristics on the aerodynamic performance of high-speed train (터널진입시 비정상 유동특성이 고속전철의 공력성능에 미치는 영향에 관한 수치해석적 연구)

  • 정수진;김태훈;성기안
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.26 no.5
    • /
    • pp.596-606
    • /
    • 2002
  • The three-dimensional unsteady compressible Euler equation solver with ALE, CFD code, PAM-FLOW based on FEM method has been applied to analyze the flow field around the high speed train which is entering into a channel. From the present study, the pressure and flow transients were calculated and analyzed. The generation of compression wave was observed ahead of train and the high pressure in the gap between the train and the tunnel was also found due to the blockage effects. It was found that abrupt fluctuation in pressure exists in the region from train nose to shoulder of train corresponding to 10% of total length of train during tunnel entry. Computed time history of aerodynamic forces of train during tunnel entry show that drag coefficient rapidly rises and saturates at about non-dimensional time 0.31. The total increase of drag coefficient before and after tunnel entry is about 1.1%. Transient profile of lift force shows similar pattern to drag coefficient except abrupt drop after saturation and lift force in the tunnel increases 0.08% more than that before tunnel entry.

The Design and Analysis of Composite Advanced Propeller Blade for Next Generation Turboprop Aircraft (차세대 터보프롭 항공기용 복합재 최신 프로펠러 설계 및 해석)

  • Choi, Won;Kim, Kwang-Hae;Lee, Won-Joong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.15 no.6
    • /
    • pp.11-17
    • /
    • 2012
  • The one way fluid structure interaction analysis on advanced propeller blade for next generation turboprop aircraft. HS1 airfoil series are selected as a advanced propeller blade airfoil. Adkins method is used for aerodynamic design and performance analysis with respect to the design point. Adkins method is based on the vortex-blade element theory which design the propeller to satisfy the condition for minimum energy loss. propeller geometry is generated by varying chord length and pitch angle at design point. Blade sweep is designed based on the design mach number and target propulsion efficiency. The aerodynamic characteristics of the designed Advanced propeller were verified by CFD(Computational Fluid Dynamic) and showed the enhanced performance than the conventional propeller. The skin-foam sandwich structural type is adopted for blade. The high stiffness, strength carbon/epoxy composite material is used for the skin and PMI(Polymethacrylimide) is used for the foam. Aerodynamic load is calculated by computational fluid dynamics. Linear static stress analysis is performed by finite element analysis code MSC.NASTRAN in order to investigate the structural safety. The result of structural analysis showed that the design has sufficient structural safety. It was concluded that structural safety assessment should incorporate the off-design points.

Internal Flow Analysis on a Mixed Flow Pump for Developing Marine Mineral Resources (해양광물자원 개발을 위한 사류형펌프의 내부유동 해석)

  • Lee, J.W.;Choi, Y.D.;Lee, Y.H.;Yoon, C.H.;Park, J.M.
    • The KSFM Journal of Fluid Machinery
    • /
    • v.13 no.5
    • /
    • pp.11-16
    • /
    • 2010
  • The development of lifting pumps that lift minerals to a mining vessel are one of the vital parts of the commercial mining process. The purpose of this study is to investigate internal flow and its effect on the performance of a mixed flow pump in order to improve the pump's performance. Numerical analysis was performed by commercial code of ANSYS CFX-11 based on flow rate and length of flexible hose. The rated rotational speed of the impeller is 1750rpm. For taking into account the turbulence, k-$\omega$ SST model was selected to guarantee more accurate prediction of flow separation. The simulated results are in good agreement with the experimental results and showed that its efficiency and the head of the pump are related mainly to the flow rate and the length of flexible hose. A lesser flow rate caused more secondary flow through the guide vane passage. The length of flexible hose and flow rate exert much more influence on the pump's performance than the shape of the flexible hose.

Numerical Cavitation Intensity on a Hydrofoil for 3D Homogeneous Unsteady Viscous Flows

  • Leclercq, Christophe;Archer, Antoine;Fortes-Patella, Regiane;Cerru, Fabien
    • International Journal of Fluid Machinery and Systems
    • /
    • v.10 no.3
    • /
    • pp.254-263
    • /
    • 2017
  • The cavitation erosion remains an industrial issue for many applications. This paper deals with the cavitation intensity, which can be described as the fluid mechanical loading leading to cavitation damage. The estimation of this quantity is a challenging problem both in terms of modeling the cavitating flow and predicting the erosion due to cavitation. For this purpose, a numerical methodology was proposed to estimate cavitation intensity from 3D unsteady cavitating flow simulations. CFD calculations were carried out using Code_Saturne, which enables U-RANS equations resolution for a homogeneous fluid mixture using the Merkle's model, coupled to a $k-{\varepsilon}$ turbulence model with the Reboud's correction. A post-process cavitation intensity prediction model was developed based on pressure and void fraction derivatives. This model is applied on a flow around a hydrofoil using different physical (inlet velocities) and numerical (meshes and time steps) parameters. The article presents the cavitation intensity model as well as the comparison of this model with experimental results. The numerical predictions of cavitation damage are in good agreement with experimental results obtained by pitting test.

Effects of the Balance Hole Diameter of an Automotive Closed Type Water Pump on Hydraulic Performance and Axial Force (자동차 워터펌프 밸런스 홀 직경이 수력성능 및 축추력에 미치는 영향)

  • Lee, Gee-Soo;Heo, Hyung-Seok;Kim, Hyun-Chul;Oh, Chang-Bok
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.3
    • /
    • pp.111-117
    • /
    • 2008
  • The aim of this paper was to investigate the fluid dynamic behavior of the automotive closed type water pump with balance hole in order to evaluate and justify its overall hydraulic performance and, in particular to analyze the effects of the balance hole on the reduction of hydraulic flow force of it. The analysis has been peformed by applying the commercial computational fluid dynamics (CFD) code, Fluent, to the solution of the 3-D turbulent flow fields of automotive closed type water pump. The reliability of the employed analysis was demonstrated by the comparison between numerical result and experimental data. Although, hydraulic head of the closed type water pump with 3mm diameter of balance hole decreased by 1.1%, axial flow force was effectively reduced by 13.3%, comparison of it with no hole at design point.