• 제목/요약/키워드: CFD Modeling

검색결과 377건 처리시간 0.026초

Study on the Manoeuvring Performance of a Fishing Vessel Based on CFD Simulation of the Hull Forms and Rudder Shapes

  • Hyeonsil Choi;Soo Yeon Kwon;Sang-Hyun Kim;In-Tae Kim
    • 한국해양공학회지
    • /
    • 제37권4호
    • /
    • pp.129-136
    • /
    • 2023
  • To evaluate manoeuvring performance of merchant ships, the mathematical modeling group (MMG) or computational fluid dynamics (CFD) simulations are used. However, it is difficult to use the MMG to evaluate the manoeuvring performance of fishing vessels, thus research using CFD simulations is necessary. Also, since the course-changing and turning ability is crucial in fishing operations, a rudder design suitable for fishing vessels is necessary. This study designs a rudder using National Advisory Committee for Aeronautics (NACA) airfoil sections and evaluates its manoeuvring performance. A CFD model is used to evaluate the manoeuvring performance of the fishing vessel, and turning and zig-zag tests are conducted. The effectiveness of using CFD simulations based on Reynolds averaged Navier-Stokes equations to assess the manoeuvring performance of fishing vessels was validated. No significant difference was found in the manoeuvring performance for hull forms and rudder designs for course-changing ability. However, the original hull form showed superior turning performance. Among five rudders with varying aspect ratios and shapes, the rudder with 5.5% aspect ratio had the best turning performance. Regarding the rudder design for fishing vessels, NACA airfoil was employed, and a rudder aspect ratio of 5.5% based on the immersed hull side area is recommended.

트랜섬 선미 후방의 점성 유동장 Topology 관찰 (Topological View of Viscous Flow behind Transom Stern)

  • 김우전;박일룡
    • 대한조선학회논문집
    • /
    • 제42권4호
    • /
    • pp.322-329
    • /
    • 2005
  • Viscous flows behind transom stern are analyzed based on CFD simulation results. Stern wave pattern is often complicated due to the abrupt change of stern surface curvature and flow separation at transom. When a ship advances at high speed, whole transom stern is exposed out of water, resulting in the so-called 'dry transom'. However, in the moderate speed regime, stern wave development in conjunction of flow separation makes unstable wavy surface partially covering transom surface, i.e., the so-called 'wetted transom'. Transom wave formation is usually affecting the resistance characteristics of a ship, since the pressure contribution on transom surface as well as the wave-making resistance is changed. Flow modeling for 'wetted transom' is difficult, while the 'dry transom modeling' is often applied for the high-speed vessels. In the present study CFD results from the RANS equation solver using a finite volume method with level-set treatment are utilized to assess the topology of transom flow pattern for a destroyer model (DTMB5415) and a container ship (KCS). It is found that transom flow patterns are quite different for the two ships, in conformity to the shape of submerged transom. Furthermore, the existence of free surface seems to after the flow topology in case of KCS.

회격자식 소각로의 열유동 해석과 결과 분석에 대한 고찰 (Discussion on the Practical Use of CFD for Grate Type Waste Incinerators)

  • 류창국;최상민
    • 한국전산유체공학회지
    • /
    • 제7권3호
    • /
    • pp.17-26
    • /
    • 2002
  • Computational fluid dynamic(CFD) analysis has been frequently applied to the waste incinerators to understand the flow performance for various design and operating parameters. Since the computational modeling inevitably requires many simplifications and complicated sub-models, validity of the results should be carefully evaluated. In this study, major computational modeling and procedure of usual simulation methods for the grate-type waste incinerators were assessed. Usual simulation method does not explicitly incorporate the waste combustion, simply by assuming the combustion gas properties from the waste bed which is treated as an inlet plane. However, effect of this arbitrary assumption on the overall flow pattern is not significant, since the flow pattern is dominated by strong pattern of jet flows of the secondary air. Thus, this method is valid in understanding the effect of flow-related parameters. In analyzing the results, deriving conclusive information directly from temperature and chemical species concentration should be avoided, since the model prediction for the gaseous reaction and the radiation reveals significant discrepancies against the actual phenomena. Use of quantitative measures such as residence time is very efficient in evaluating the flow performance.

성능기반 화재모델(FDS)을 이용한 원전 방화지역 화재위험 분석조건에 대한 민감도 해석 (Sensitivity Analysis for Fire Risk Conditions of Fire Area at Nuclear Power Plant with Performance-based Fire Model (FDS))

  • 지문학;이병곤;정래혁
    • 한국화재소방학회논문지
    • /
    • 제21권2호
    • /
    • pp.98-104
    • /
    • 2007
  • 본 연구는 원자력발전소의 방화지역에 대한 화재위험을 전산유체역학모델인 FDS를 이용하여 평가한 내용이다. 원자로 안전정지를 유지하기 위한 스위치기어실이 화재지역으로 선정되었으며, 화재 시나리오는 가상 화재조건을 기준으로 구성되었다. 본 연구의 주요 목적은 화재 모델링의 주요 입력항목인 열 발생율과 분석 모델 격자 크기를 변경한 경우 프로그램에 의하여 나타나는 결과값의 민감도를 분석하는 것이다. 그 결과는 전산유체역학모델에서 개선이 필요한 항목과 함께 결론에 제시되었다.

A STUDY ON THE PREDICTION OF THE BASE FLOW CHARACTERISTICS OF A LAUNCH VEHICLE USING CFD

  • Kim Younghoon;Ok Honam;Kim Insun
    • 한국우주과학회:학술대회논문집(한국우주과학회보)
    • /
    • 한국우주과학회 2004년도 한국우주과학회보 제13권2호
    • /
    • pp.258-261
    • /
    • 2004
  • Numerical simulations are made to predict the axial force coefficients of a two-stage launch vehicle, and the results are compared with those by wind tunnel tests. It is found that the forebody axial force is not affected by whether the base of the body is modeled or not. Modeling the sting support used in wind tunnel tests reduced the base axial force compared to the results without it. The present calculation shows that the forebody axial forces are underestimated while the base axial forces are overestimated. The total axial force, therefore, compares with the experimental data with better accuracy by cancelling out the errors of opposite signs. Modeling of the sting support in numerical simulations is found to be necessary to get a better agreement with the experiments for both base and overall axial force coefficients.

  • PDF

CFD 해석을 이용한 Balloon형 인공심폐기 설계를 위한 구조적 해석 (Structural Analysis for Constructing a Balloon Type Extracoporeal Membrane Oxygenator using CFD Analysis)

  • 박영란;심정연;김기범;김상진;강형섭;김진상;김민호;홍철운;김성종
    • Korean Chemical Engineering Research
    • /
    • 제49권2호
    • /
    • pp.238-243
    • /
    • 2011
  • 본 연구는 기존의 인공심폐기의 단점을 보완하기 위하여 혈액펌프를 사용하지 않고 혈류의 흐름을 유도할 수 있는 기구(balloon)형 인공심폐기 설계를 위한 구조적 해석을 시도하였다. 가상의 모형 인공심폐기 내에서의 혈류의 흐름패턴을 분석하기 위하여 CFD 모델링 방법을 사용하였다. 이 시스템의 작동원리는 막 산화기 주위를 기구를 사용하여 압력하중을 인가하여 주기적으로 수축.이완되도록 하였으며, 시간에 따라 변화하는 시간 함수 값은 sine 반주기와 sine 주기를 계산하여 적용하였다. 이와 같은 방법으로 기구형 인공심폐기를 설계할 경우 한 방향에 대한 혈류의 움직임을 유도할 수 있다는 가정 하에 구조적 해석을 하였다. 실험결과 CFD 시뮬레이션을 통하여 인공심폐기의 입구와 출구에 서의 혈류의 속도와 압력을 측정하여 분석한 결과 한 방향에 대한 혈류의 유동이 발생하는 것을 확인하였다. 이와 같은 CFD 시뮬레이션은 혈류의 흐름특성을 미리 예측할 수 있어 인공심폐기 설계에 있어서 최적화된 디자인을 제공할 수 있을 것이라 판단된다.

과수원용 스프레이어의 농약 살포 및 비산 예측을 위한 전산유체해석 (CFD Modeling of Pesticide Flow and Drift from an Orchard Sprayer)

  • 홍세운;김락우
    • 한국농공학회논문집
    • /
    • 제60권3호
    • /
    • pp.27-36
    • /
    • 2018
  • Effective pesticide applications are needed to assure the quality and economic competitiveness of fruit production and lower the risk of spray drift. Experimental studies have shown that better spray coverage and less driftability require an understanding of the transport of spray droplets within turbulent airflows in the orchard and the interaction between droplet dynamics and tree canopies. This study developed a computational fluid dynamics (CFD) model to predict pesticide flows in the orchard and spray drift discharged from an air-assisted orchard sprayer. The model represented the transport of spray droplets as well as droplets captured by tree canopies, which were modeled as a conical porous model and branched tree model. Validation of the CFD model was accomplished by comparing the CFD results with field measurements. Spray depositions inside tree canopies and at off-target locations were in good agreement with the measurements. The resulting data presented that 38.6%~42.3% of the sprayed droplets were delivered to the tree canopies while 13.6%~20.1% were drifted out of the orchard, part of them reached farther than 200 m from the orchard. The study demonstrates that CFD model can be used to evaluate spray application performance and spray drift potential.

CFD를 이용한 풍력발전 터빈의 3차원 유동해석 및 성능평가에 관한 연구 (A Study on Three-Dimensional Flow Characteristics and Power Performance of HAWT(Horizontal Axis Wind Turbine) by CFD)

  • 김범석;김정환;남청도;이영호
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2002년도 학술대회지
    • /
    • pp.447-450
    • /
    • 2002
  • The purpose of this 3-D numerical simulation is to calculate and examine a 500 kW Horizontal Axis Wind Turbine (HAWT) power performance and 3-D rotor flow characteristics, which are compared to calculation data from Delft University. The experimental approach, which has been the main method of investigation, appears to be reaching its limits, the cost increasing relate with the size of wind turbines. Hence, the use of Computational Fluid Dynamics (CFD) techniques and Navier-Stokes solvers is considered a very serious contender. We has used the CFD software package CFX-TASCflow as a modeling tool to predict the power performance and 3-D flow characteristics of a wind turbine on the basis of its geometry and operating data. The wind turbine with 40m diameters rotor, it was scaled to compare with the calculation data from delft university. The HAWT, which has eight-rpm variations are investigated respectively. The pitch angle is $+0.5^{\circ}$and wind speed is fixed at 5m/s. The tip speed ratio (TSR) of the HAWT ranging from 2.89 to 9.63.

  • PDF

헬리콥터 로터 공력해석을 위한 수치적 방법 연구 (THE INVESTIGATION OF HELICOPTER ROTOR AERODYNAMIC ANALYSIS METHODS)

  • 박남은;우철훈;노현우;김철호;이석준
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2007년도 춘계 학술대회논문집
    • /
    • pp.120-124
    • /
    • 2007
  • Helicopters and rotary-wing vehicles encounter a wide variety of complex aerodynamic phenomena and these phenomena present substantial challenges for computational fluid dynamics(CFD) models. This investigation presents the rotor aerodynamic analysis items for the helicopter development and variety aerodynamic analysis methods to provide the better solution to researchers and helicopter developers between aerodynamic problems and numerical aerodynamic analysis methods. The numerical methods to make an analysis of helicopter rotor are as below - CFD Modelling : actuator disk model, BET model, fully rotor model,... - Grid : sliding mesh, chimera mesh / structure mesh, unstructure mesh,... - etc. : panel method periodic boundary, quasi-steady simulation, incompressible,... The choice of CFD methodology and the numerical resolution for the overall problem have been driven mostly by available computer speed and memory at any point in time. The combination of the knowledge of aerodynamic analysis items, available computing power and choice of CFD methods now allows the solution of a number of important rotorcraft aerodynamics design problems.

  • PDF