• Title/Summary/Keyword: CFD Modeling

Search Result 377, Processing Time 0.028 seconds

Installed Performance Analysis of a Turboshaft Engine Considering Inlet and Exhaust Losses Estimated by Cfd Technique (CFD 기법에 의해 예측된 흡입구 및 배기구 손실을 고려한 터보축 엔진의 장착성능에 관한연구)

  • Kong Chang-Duk;Owino George Omollo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.106-109
    • /
    • 2006
  • The purpose of this study is to analyze the installed performance of the PW206C turbo shaft engine used in the development of the smart UAV(Unmanned Ariel Vehicle) by KARI(Korean Aerospace Research Institute). It mainly aims to investigate performance behavior at installed conditions using both inlet and exhaust losses generated by CFD analysis of the ducts. The ways employed to be able to analyze the performance extensively were mainly rallied out by performing design point analysis of the engine where the performance simulation results from the commercial program 'GASTURB 9' used for simulation were used as inlet boundary condition for the ducts in CFD program The use of CFD tool involve modeling of the ducts to conform with the stipulated shape and sizes as defined by KARI with a grid density that allows reasonable flow characteristics applicable to aircraft components. Respective values of Shaft horse power obtained by varying flight Mach number, Gas generator RPM and Altitude considering several losses inclusive of those estimated by use of CFD tool were then plotted at three conditions with the ECS-OFF, ECS-MAX and at un-installed condition. Reasonable results were obtained as a result of using computational fluid dynamics that can hence be justified as an alternative tool for use in future flow analysis of engine and components.

  • PDF

Study on the micro-scale simulation of wind field over complex terrain by RAMS/FLUENT modeling system

  • Li, Lei;Zhang, Li-Jie;Zhang, Ning;Hu, Fei;Jiang, Yin;Xuan, Chun-Yi;Jiang, Wei-Mei
    • Wind and Structures
    • /
    • v.13 no.6
    • /
    • pp.519-528
    • /
    • 2010
  • A meteorological model, RAMS, and a commercial computational fluid dynamics (CFD) model, FLUENT are combined as a one-way off-line nested modeling system, namely, RAMS/FLUENT system. The system is experimentally applied in the wind simulation over a complex terrain, with which numerical simulations of wind field over Foyeding weather station located in the northwest mountainous area of Beijing metropolis are performed. The results show that the method of combining a meteorological model and a CFD model as a modeling system is reasonable. In RAMS/FLUENT system, more realistic boundary conditions are provided for FLUENT rather than idealized vertical wind profiles, and the finite volume method (FVM) of FLUENT ensures the capability of the modeling system on describing complex terrain in the simulation. Thus, RAMS/FLUENT can provide fine-scale realistic wind data over complex terrains.

APPLICATION OF CFD TECHNIQUE TO PERFORMANCE PREDICTION OF SPRAY CHARACTERISTICS OF WATER-MIST FIRE SUPPRESSION NOZZLES (미분무수 소화 노즐의 분무 특성 예측을 위한 CFD기법의 적용)

  • Chung, H.T.;Lee, C.H.;Cho, B.I.;Han, Y.S.;Ock, Y.W.
    • Journal of computational fluids engineering
    • /
    • v.11 no.4 s.35
    • /
    • pp.56-61
    • /
    • 2006
  • Numerical simulation has been performed to investigate the characteristics of the mist flow through the fire suppression nozzles. The commercial CFD software, FLUENT with the proper modeling was applied for analyzing both the internal and external flow of the spray nozzles. Computations were made for the full cone nozzle in the operation range of the low pressure and high flow-rate. To validate the present computational procedure, numerical results are compared with measurements in terms of K-factor, SMD, axial spray velocity and spray angles. Numerical results suggested that the present numerical model can be used as an adequate tool for a design purpose of mist-spray nozzles.

Application of CFD Technique to Performance Prediction of Spray Characteristics of Fire Suppression Nozzles (소화 노즐의 분무 특성 예측을 위한 CFD 기법의 적용)

  • Chung, H.;Lee, C.;Jung, H.;Choi, B.;Han, Y.;Ohck, Y.
    • 유체기계공업학회:학술대회논문집
    • /
    • 2005.12a
    • /
    • pp.233-239
    • /
    • 2005
  • In the present study, numerical simulation has been performed to investigate the characteristics of the mist flow through the fire suppression nozzles. The commercial CFD software, FLUENT with the proper modeling was applied in both the internal and external flow region of the spray nozzles. Applications were done to the full cone nozzle for the operation range of the low pressure and high flow-rate. Numerical validation was proved by the comparison of the experimental data. Parametric study of the key design factors was tried to improve the performance.

  • PDF

Dissolved oxygen analysis of an abalone aquaculture cage system using computational fluid dynamics

  • Kim, Taeho
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.51 no.2
    • /
    • pp.155-162
    • /
    • 2015
  • Abalone (Haliotis discus hannai) is a shellfish that feeds on kelp and, as a product, it can often achieve a high market value. However, the dissolved oxygen (DO) levels in coastal waters in Korea have been negatively impacted by pollution from many anthropogenic sources. Herein, a computational fluid dynamics (CFD) software package was used to analyze the distribution of the DO concentration within an abalone containment structure. A finite volume approach was used to solve the Reynolds-averaged Navier-Stokes equations combined with a $k-{\varepsilon}$ turbulence model to describe the flow. The distribution of DO was determined within the control volume domain, and the transport equations of the pollutants were interpreted using a CFD model. The CFD analysis revealed that more than 60% and 30% of the relative oxygen concentration in one and two containers, respectively, was maintained when the flow acts along the six sheets of polyethylene plates. Therefore, it is clear that the abalone plate shelters should be placed parallel to the flow.

A Methodology for Determination of the Safety Distance in Chemical Plants using CFD Modeling (CFD 모델링을 이용한 화학공장의 안전거리 산정 방법론에 관한 연구)

  • Baek, Ju-Hong;Lee, Hyang-Jig;Jang, Chang Bong
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.3
    • /
    • pp.162-167
    • /
    • 2016
  • As the simple empirical and phenomenological model applied to the analysis of leakage and explosion of chemical substances does not regard numerous variables, such as positional density of installations and equipment, turbulence, atmospheric conditions, obstacles, and wind effects, there is a significant gap between actual accident consequence and computation. Therefore, the risk management of a chemical plant based on such a computation surely has low reliability. Since a process plant is required to have outcomes more similar to the actual outcomes to secure highly reliable safety, this study was designed to apply the CFD (computational fluid dynamics) simulation technique to analyze a virtual prediction under numerous variables of leakages and explosions very similarly to reality, in order to review the computation technique of the practical safety distance at a process plant.

Assessment of the influence of coal combustion model and turbulent mixing rate in CFD of a 500 MWe tangential-firing boiler (500 MWe급 접선 연소 보일러 해석시 난류 혼합 속도 및 석탄 연소 모델의 영향 평가)

  • Yang, Joo-Hyang;Kang, Kie-Seop;Ryu, Changkook
    • 한국연소학회:학술대회논문집
    • /
    • 2015.12a
    • /
    • pp.69-72
    • /
    • 2015
  • Computational fluid dynamics (CFD) modeling of large-scale coal-fired boilers requires a complicated set of flow, heat transfer and combustion process models based on different degrees of simplification. This study investigates the influence of coal devolatilization, char conversion and turbulent gas reaction models in CFD for a tangential-firing boiler at 500MWe capacity. Devolatilization model is found out not significant on the overall results, when the kinetic rates and the composition of volatiles were varied. In contrast, the turbulence mixing rate influenced significantly on the gas reaction rates, temperature, and heat transfer rate on the wall. The influence of char conversion by the unreacted core shrinking model (UCSM) and the 1st-order global rate model was not significant, but the unburned carbon concentration was predicted in details by the UCSM. Overall, the effects of the selected models were found similar with previous study for a wall-firing boiler.

  • PDF

A Study on the Modeling of Transitional Lateral Force Acting on the Berthing Ship by CFD

  • Kong, Gil-Young;Lee, Yun-Sok;Lee, Sang-Min
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.7
    • /
    • pp.1196-1202
    • /
    • 2004
  • To evaluate the unsteady motion in laterally berthing maneuver, it is necessary to estimate clearly the magnitudes and properties of hydrodynamic forces acting on ship hull in shallow water. A numerical simulation has been performed to investigate quantitatively the hydrodynamic force according to water depth for Wigley model using the CFD (Computational Fluid Dynamics) technique. By comparing the computational results with the experimental ones, the validity of the CFD method was verified. The numerical solutions successfully captured some features of transient flow around the berthing ship. The transitional lateral force in a state ranging from the rest to the uniform motion is modeled by using the concept of circulation.

Determining Factors to Enhanced Oil Mist Filter Efficiency Using CFD Modeling (CFD모델링을 통한 오일 미스트필터효율 향상 결정요소에 관한 연구)

  • Shin, Hee-Jae
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.10
    • /
    • pp.119-127
    • /
    • 2021
  • Small drops in gas cause some problems for downstream equipments such as turbine, compressor and etc. In some cases, we are obliged to remove hazardous liquid mist from gas. In order to remove water or other liquids from the gas, there are some equipments like mesh mist eliminator and vane-plate mist eliminator. oil mist filter is a kind of liquid eliminator equipments used to remove the liquid with 1-10um droplet diameter from the gas. In this paper is determine the factors affecting the oil mist filter efficiency using CFD. length and angle of the filter were considered and the results and compare the results of the efficiency tests, showed error of less than 3%. optimum filter can remove more than 87.3% between 1 and 10um of oil mist.

Optimal Design of Bipolar-Plates for a PEM Fuel Cell (고분자 전해질 연료전지용 분리판 최적 설계)

  • Han, In-Su;Jeong, Jee-Hoon;Lim, Jong-Koo;Lim, Chan;Jung, Kwang-Sup
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.99-102
    • /
    • 2006
  • Optimal flow-field design of bipolar-plates for a commercial class PEM(polymer electrolyte membrane) fuel cell stack was carried out on the basis of three-dimensional computational fluid dynamics(CFD) simulation. A three-dimensional CFD model originally developed by Shimpalee et al., has been utilized for performing large-scale simulation of a single fuel cell consisting of bipolar-plates gas diffusion layers, and a membrane-electrode-assembly(MEA). The CFD model is able to predict the current density, pressure drops, gas velocities, vapor and liquid water contents, temperature distributions, etc. inside a single fuel cell. Depending on simulation results from the CFD modeling of a PEM fuel cell, several flow-fields of bipolar-plates were designed and verified. The final design of the bipolar-plate has been chosen from the simulations and experimental tests and showed the best performance as expected from the simulation results under a normal operating condition. Thus, the CFD simulation approach to design the optimal flow-field of the bipolar-plates was successful. The final design was adopted as the best flow-field to build a commercial scale PEM fuel cell stack, the performance of which shows about 42% higher than that of the older bipolar-plate design.

  • PDF