• Title/Summary/Keyword: CFD 유동해석

Search Result 1,329, Processing Time 0.03 seconds

CFD ANALYSIS FOR THERMAL MIXING CHARACTERISTICS OF A FLOW MIXING HEADER ASSEMBLY OF SMART (SMART 유동혼합헤더집합체 열혼합 특성 해석)

  • Kim, Y.I.;Bae, Y.M.;Chung, Y.J.;Kim, K.K.
    • Journal of computational fluids engineering
    • /
    • v.20 no.1
    • /
    • pp.84-91
    • /
    • 2015
  • SMART adopts, very unique facility, an FMHA to enhance the thermal and flow mixing capability in abnormal conditions of some steam generators or reactor coolant pumps. The FMHA is important for enhancing thermal mixing of the core inlet flow during a transient and even during accidents, and thus it is essential that the thermal mixing characteristics of flow of the FMHA be understood. Investigations for the mixing characteristics of the FMHA had been performed by using experimental and CFD methods in KAERI. In this study, the temperature distribution at the core inlet region is investigated for several abnormal conditions of steam generators using the commercial code, FLUENT 12. Simulations are carried out with two kinds of FMHA shapes, different mesh resolutions, turbulence models, and steam generator conditions. The CFD results show that the temperature deviation at the core inlet reduces greatly for all turbulence models and steam generator conditions tested here, and the effect of mesh refinement on the temperature distribution at the core inlet is negligible. Even though the uniformity of FMHA outlet hole flow increases the thermal mixing, the temperature deviation at the core inlet is within an acceptable range. We numerically confirmed that the FMHA applied in SMART has an excellent mixing capability and all simulation cases tested here satisfies the design requirement for FMHA thermal mixing capability.

Evacuation characteristic measurement of anti-suck back centering by mini vacuum system (미니 진공시스템을 이용한 역류방지 센터링의 배기 특성 측정)

  • Hong, Gwang-Gi;Go, Seok-Il;Do, U-Ri;Yang, Won-Gyun;Ju, Jeong-Hun
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2009.05a
    • /
    • pp.255-256
    • /
    • 2009
  • The anti suck back centering (ASBC) for preventing backflow of oil for oil rotary pump was designed in the power failure. To evaluate the evacuation characteristics, we manufactured the mini vacuum system, personal computer, AD converter (National instrument, NI-6009), and automatic controller with touch panel for a basis. In this study, we measured the evacuation characteristics of ABSC and analyzed the flow field of viscous flow regime using a commercial software, CFD-ACE+. Also, the leakage of the advaced ASBC for leveling was measured.

  • PDF

The Extension and Validation of OpenFOAM Algorithm for Rotor Inflow Analysis using Actuator Disk Model (Actuator Disk 모델 기반의 로터 유입류 해석을 위한 OpenFOAM 알고리즘 확장)

  • Kim, Tae-Woo;Oh, Se-Jong;Yee, Kwan-Jung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.12
    • /
    • pp.1087-1096
    • /
    • 2011
  • The purpose of current study is to develop and verify the newly developed solver for analyzing rotor flow using the open-source code. The algorithm of standard solver, OpenFOAM, is improved to analyze the rotor inflow with and without fuselage. For the calculation of the rotor thrust, the virtual blade method based on the blade element method is employed. The inflow velocities on the rotor disk used to specify the effective angle of attack, have been included in the solver. The results of the current rotor inflow analysis are verified by comparing with other experimental and numerical results. It was confirmed that the modified solver provides satisfactory results for rotor-fuselage interaction problem.

CFD-based Path Planning and Flight Safety Assessment for Drone Operation in Urban Areas (CFD를 이용한 도심내 드론 비행 경로 계획 및 안전성 평가)

  • Geon-Hong Kim;Ayoung Hwang;Hyoyeong Kim;Yeonmyeong Kim
    • Journal of Aerospace System Engineering
    • /
    • v.18 no.2
    • /
    • pp.40-46
    • /
    • 2024
  • This study suggests a method to enhance drone flight path planning and safety evaluation in urban areas using Computational Fluid Dynamics (CFD). As the use of drones in urban environments has been growing rapidly, there is a lack of established methods for path planning and safety evaluation, which leads to a risky approach relying on experimental methods. Therefore, this research takes into account the intricate 3D fluid dynamics between drones and buildings by employing CFD to quantitatively plan flight paths and evaluate their safety. To accomplish this, the study focuses on Gimcheon Innovation City as the target area and collects relevant terrain and building data, and selects prospective flight routes. CFD analysis is then carried out to gather essential data for flight simulations and safety assessment. The safety assessments are conducted based on environmental fluid dynamics when the drone operates along the proposed flight paths

Study of Flowfield of the Interaction of Secondary Sonic Jet into a Supersonic Nozzle (음속 이차유동 분출시 나타나는 초음속 노즐 내부 유동장에 관한 연구)

  • Ko, Hyun;Lee, Yeol;Yoon, Woong-Sup
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.7 no.3
    • /
    • pp.45-52
    • /
    • 2003
  • Detailed flowfield resulting from the secondary sonic gas injection into a divergent section of supersonic conical nozzle has been numerically investigated. The three-dimensional flowfield associated with the bow-shock/boundary-layer interaction inside the nozzle has been solved by Reynolds-averaged Navier-Stokes equations with an algebraic and $\kappa$-$\varepsilon$ turbulence model. The numerical results have been compared with the experimental results for the identical flow conditions, and it is shown that the comparison is satisfactory Effects of different injection pressures of the secondary jet on the shock/boundary-layer interactions and the overall flow structure inside the nozzle have been investigated. The vortex structures behind the shock interaction and wall pressure variations have also been studied.

Heat Transfer Characteristics of Cost Effective Plate Fin-tube Condenser for Household Refrigerator (가정용 냉장고의 응축기 비용저감을 위한 판형 핀-관 열교환기의 열전달 특성)

  • Son, Young-Woo;Lee, Jang-Ho
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.323-327
    • /
    • 2008
  • 본 연구는 판형 핀-관 열교환기의 열전달 특성을 상용 CFD 코드인 SC/Tetra를 사용하여 해석한 내용에 관한 것이다. 해석조건은 입구속도 0.63 m/s, 튜브온도 $44.5^{\circ}C$이다. 해석 열교환기는 총6가지로 검토하였으며 각각의 온도분포와 유동패턴을 해석하고 판형 핀-관 열교환기의 열전달 특성을 비교 검토하였다.

  • PDF

Application of the V2-F Turbulence Model for Flow Analysis of Turbomachinery (V2-F 난류 모델의 터보기계 유동 해석 적용)

  • Park, Jae Hyeon;Sohn, Dong Kyung;Kim, Chang Hyun;Baek, Je Hyun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.2
    • /
    • pp.75-83
    • /
    • 2016
  • Since a turbomachine has complex flow characteristics, which are caused by adverse pressure gradient and high speed motion, an elaborate turbulence model is needed to accurately predict the flow. Some turbulence models such as an algebraic or a two-equation eddy viscosity model have been used for in-house RANS-code, but it is difficult to obtain good result for several complex flows. In this study, Durbin's V2-F turbulence model, which has been known for better prediction for severe flow separation, is applied to T-Flow. It was validated for simple cases such as channel and compressor cascade, and its applicability to turbomachinery was shown by analyzing internal flow of a single rotor. As a result, the V2-F turbulence model shows better blade surface pressure distribution than the one-and-two equation turbulence model.

Design of Velocity and Pressure Compounded Impulse Turbine (속도 및 압력 복합형 충동 터빈 설계)

  • Jeong, Eun-Hwan;Park, Pyun-Goo;Kim, Jin-Han
    • Aerospace Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.185-192
    • /
    • 2010
  • Design of velocity-compounded turbine for 75ton class LRE turbopump application and pressure compounded turbine for 30ton class LRE turbopump has been performed. 1D calculation and CFD analysis were conducted in determining blade and flow passage shape of velocity compounded turbine iteratively. Finally, 23.1% improved specific power and 5% reduced weight turbine to the original design was developed. In case of pressure-compounded supersonic turbine design, rotational speed was increased by 50% and the effect of carryover ratio, 2nd nozzle installation angle, leakage flow of 2nd nozzle, and work sharing factor was studied. Final 1D design resulted 36% increased specific power and 51% reduced weight comparing to the original single-row impulse turbine. It is anticipated that nozzle flow path design will be very important for the accomplishment of expected performance of pressure-compounded turbine and nozzle shape optimization will be conducted through the CFD analysis.

Design and Test of an Assembly of Air Intake and Variable Geometry Inertial Separator for a Turboprop Aircraft (터보프롭 항공기용 흡입구 덕트 및 가변형 관성분리기 조립체 설계 및 시험)

  • Kim, Woncheol;Oh, Seonghwan;Lee, Sanghyo;Park, Jonghwa
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.9
    • /
    • pp.714-719
    • /
    • 2013
  • A turboprop aircraft for this study is required to operate at icing condition in order that it performs its given mission. So an air intake system of the turboprop aircraft should be designed and verified not only to provide the maximum possible total pressure at engine inlet at normal flight condition, but also to include an inertial separator which protects Foreign Object Debris (FOD) like ice or snow at icing condition from entering into the engine inlet screen which can cause or lead an catastrophic engine failure like engine flame-out or severe damage. So an air intake assembly incorporating a variable geometry inertial separator has been designed and then CFD/structural analysis for the assembly was performed to see its design results. Then 35% scaled model of the air intake assembly was manufactured and wind tunnel test was done. This paper describes the detailed design results for the aerodynamic design, analysis and wind tunnel testing during the development process of the air intake assembly.

Aerodynamic Characteristic and Reference Trajectory Design of A/L Phase for the Re-Entry Vehicle (재진입 비행체의 A/L 단계 공력특성과 기준궤적 설계)

  • Jang, Jang-Sik;Baek, Jo-Ha;Min, Chan-Oh;Kim, Jong-Hun;Lee, Dae-Woo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.8
    • /
    • pp.753-760
    • /
    • 2008
  • The present study is concerned with aerodynamic characteristics and reference trajectory generation of Hope-X in Approach/Landing phase. To create reference trajectory generation in A/L phase, detailed informations on lift and drag coefficients of Hope-X must be provided. To obtain these informations, aerodynamic characteristics of Hope-X are analyzed using the commercial CFD code, Fluent. The A/L phase is conceptually divided into three sub-phases: the Steepglide Slope phase for stability of vehicle, the Flare Maneuver phase for safety landing, the Circular Flare for smooth connecting with these both phases. The reference trajectory is obtained by determination of flight-path angle through geometrical formulas with consideration of aerodynamic coefficient and dynamic characteristic.