• Title/Summary/Keyword: CFD 유동해석

Search Result 1,329, Processing Time 0.033 seconds

Analysis of Airflow Characteristics in an Enclosed Growing-Finishing Pig House (무창 육성.비육돈사의 공기유동 특성 분석)

  • Song, J.I.;Choi, H.L.;Choi, H.C.;Lee, D.S.;Jeon, B.S.;Jeon, J.H.;Yoo, Y.H.
    • Journal of Animal Environmental Science
    • /
    • v.14 no.1
    • /
    • pp.39-46
    • /
    • 2008
  • Experiments were carried out to evaluate the air speed distribution of an enclosed growing-finishing pig house in summer and winter. The data taken by experiments were compared to validate with the calculated air speeds by a commercial CFD code, FLUENT. Air basically enters into the house through Baffled slot Inlet and leaves through a exhaust fan attached on the Exhaust fan in exiting wall of the house. Air speeds were measured as $2{\sim}2.5m/s$ at the two side slot in winter and 0.8 m/s in summer. The validation showed that a CFD simulation is one of feasible methods to predict airspeed distribution in the growing-finishing pig house.

  • PDF

A Study on the Characteristics of Lift and Drag Fluctuation Power Spectral Density in a Heat Exchanger Tube Array (전열관군에서 양력과 항력 변동의 PSD 특성 연구)

  • Ha, Ji-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.2
    • /
    • pp.712-718
    • /
    • 2016
  • A heat exchanger tube array in a heat recovery steam generator is exposed to hot exhaust gas flow that can cause flow induced vibrations, which could damage the heat exchanger tube array. The characteristics of flow induced vibration in the tube array need to be established for the structural safe operation of a heat exchanger. Several studies of the flow induced vibrations of typical heat exchangers have been conducted and the nondimensional PSD (Power Spectral Density) function with the Strouhal number, fD/U, had been derived using an experimental method. The present study examined the results of the previous experimental research on the nondimensional PSD characteristics by CFD analysis and the basis for the application of flow induced vibration to the heat recovery steam generator tube array was determined from the present CFD analysis. The present CFD analysis introduced circular cylinder tube array and calculated using unsteady laminar flow for the tube array. The characteristics of lift and drag fluctuations over the cylinder tube array was investigated. The derived nondimensional lift and drag PSD was compared with the results of the previous experimental research and the characteristics of lift and drag PSD for a circular cylinder tube array was established from the present CFD study.

Numerical Investigation of Sunroof Buffeting for Hyundai Simplified Model (HSM의 썬루프 버페팅 수치해석)

  • Khondge, Ashok;Lee, Myunghoon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.3
    • /
    • pp.180-188
    • /
    • 2014
  • Hyundai Motor Group(HMG) carried out experimental investigation of sunroof buffeting phenomena on a simplified car model called Hyundai simplified model(HSM). HMG invited participation from commercial CFD vendors to perform numerical investigation of sunroof buffeting for HSM model with a goal to determine whether CFD can predict sunroof buffeting behavior to sufficient accuracy. ANSYS Korea participated in this investigation and performed numerical simulations of sunroof buffeting for HSM using ANSYS fluent, the general purpose CFD code. First, a flow field validation is performed using closed sunroof HSM model for 60 km/h wind speed. The velocity profiles at three locations on the top surface of HSM model are predicted and compared with experimental measurement. Then, numerical simulations for buffeting are performed over range of wind speeds, using advanced scale resolving turbulence model in the form of detached eddy simulation (DES). Buffeting frequency and buffeting level are predicted in simulation and compared with experimental measurement. With reference to comparison between experimental measurements with CFD predictions of buffeting frequency and level, conclusion are drawn about predictive capabilities of CFD for real vehicle development.

Numerical Analysis of Flow Distribution inside a Fuel Assembly with Split-type Mixing Vanes for the Development of Regulatory Guideline on the Applicability of CFD Software (전산유체역학 소프트웨어 적용성에 관한 규제 지침 개발을 위한 분할 형태 혼합날개가 장착된 연료집합체 내부유동 분포 수치해석)

  • Lee, Gong Hee;Cheong, Ae Ju
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.29 no.10
    • /
    • pp.538-550
    • /
    • 2017
  • In a PWR (Pressurized Water Reactor), the appropriate heat removal from the surface of fuel rod bundle is important for ensuring thermal margins and safety. Although many CFD (Computational Fluid Dynamics) software have been used to predict complex flows inside fuel assemblies with mixing vanes, there is no domestic regulatory guideline for the comprehensive evaluation of CFD software. Therefore, from the nuclear regulatory perspective, it is necessary to perform the systematic assessment and prepare the domestic regulatory guideline for checking whether valid CFD software is used for nuclear safety problems. In this study, to provide systematic evaluation and guidance on the applicability of CFD software to the domestic nuclear safety area, the results of the sensitivity analysis for the effect of the discretization scheme accuracy for the convection terms and turbulence models, which are main factors that contribute to the uncertainty in the calculation of the nuclear safety problems, on the prediction performance for the turbulent flow distribution inside the fuel assembly with split-type mixing vanes were explained.

Application of CFD-VOF Model to Autonomous Microfluidic Capillary System (마이크로 모세관 유동 해석을 위한 CFD-VOF 모텔 응용)

  • Jeong J.H.;Im Y.H.;Han S.P.;Suk J.W.;Kim Y.D.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2004.03a
    • /
    • pp.224-229
    • /
    • 2004
  • The objective of this work is not only to perform feasibility studies on the CFD (computational fluid dynamics) analysis for the capillary system design but also to provide an enhanced understanding of the autonomous capillary flow. The capillary flow is evaluated by means of the commercial CFD software of FLUENT, which includes the VOF (volume-of-fluid) model for multiphase flow analysis. The effect of wall adhesion at fluid interfaces in contact with rigid boundaries is considered in terms of static contact angle. Feasibility studies are first performed, including mesh-resolution influence on pressure profile, which has a sudden increase at the liquid/gas interface. Then we perform both 2D and 3D simulations and examine the transient nature of the capillary flow. Analytical solutions are also derived for simple cases and compared with numerical results. Through this work, essential information on the capillary system design is brought out. Our efforts and initial success in numerical description of the microfluidic capillary flows enhance the fundamental understanding of the autonomous capillary flow and will eventually pave the road for full-scale, computer-aided design of microfluidic networks.

  • PDF

A Study on Three-Dimensional Flow Characteristics and Power Performance of HAWT(Horizontal Axis Wind Turbine) by CFD (CFD를 이용한 풍력발전 터빈의 3차원 유동해석 및 성능평가에 관한 연구)

  • Kim Beom-Seok;Kim Jeong-Hwan;Nam Chung-Do;Lee Young-Ho
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.447-450
    • /
    • 2002
  • The purpose of this 3-D numerical simulation is to calculate and examine a 500 kW Horizontal Axis Wind Turbine (HAWT) power performance and 3-D rotor flow characteristics, which are compared to calculation data from Delft University. The experimental approach, which has been the main method of investigation, appears to be reaching its limits, the cost increasing relate with the size of wind turbines. Hence, the use of Computational Fluid Dynamics (CFD) techniques and Navier-Stokes solvers is considered a very serious contender. We has used the CFD software package CFX-TASCflow as a modeling tool to predict the power performance and 3-D flow characteristics of a wind turbine on the basis of its geometry and operating data. The wind turbine with 40m diameters rotor, it was scaled to compare with the calculation data from delft university. The HAWT, which has eight-rpm variations are investigated respectively. The pitch angle is $+0.5^{\circ}$and wind speed is fixed at 5m/s. The tip speed ratio (TSR) of the HAWT ranging from 2.89 to 9.63.

  • PDF

NUMERICAL ANALYSIS OF CAVITATION WITH COMPRESSIBILITY EFFECTS AROUND HEMISPHERICAL HEAD-FORM BODY (반구형 전두부 실린더에서 발생하는 캐비테이션 유동의 압축성 효과에 대한 수치해석 연구)

  • Park, S.;Rhee, S.H.;Shin, B.R.
    • Journal of computational fluids engineering
    • /
    • v.18 no.4
    • /
    • pp.9-16
    • /
    • 2013
  • Cavitation on an axi-symmetric hemispherical head-form body was studied using an Reynolds-averaged Navier-Stokes equations solver based on a cell-centered finite volume method. To consider compressibility effects on the vapor phase and cavity interface, a pressure-based compressible flow CFD code was developed. To validate the developed CFD code, cavitating flow around the hemispherical head-form body was simulated using pressure-based incompressible and compressible CFD codes and validated against existing experimental data in the three-way comparison. The cavity shedding behavior, length of re-entrant jet, drag history, and Strouhal number of the hemispherical head-form body were compared between two CFD codes. The results, in this paper, suggested that the computations of cavitating flow with compressibility effects improve the description of cavity dynamics.

Velocity Considered Sectional Porosity Equivalent Model (VSPE) of Filters for CFD Analysis of Breakaway Devices (수소 브레이크어웨이 디바이스 유동해석을 위한 필터의 구간별 다공성 등가 모델 제시)

  • Son, Seong-Jae;An, Su-Jin;Song, Tae-Hoon;Joe, Choong-Hee;Park, Sang-Hu
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.8
    • /
    • pp.82-90
    • /
    • 2019
  • We propose an equivalent model of a sintered metal mesh filter calculated by Ergun's equation and polynomial regression for the CFD analysis of breakaway devices at a hydrogen fueling station. CFD analysis of filters that cause high pressure loss is essential because breakaway devices in high-pressure hydrogen conditions require low pressure loss. A differential pressure experiment with a filter was performed in a low-pressure air condition considering similarities. An equivalent model was developed by deriving the resistance value by the polynomial regression using the experimental results. The results of CFD analysis using the equivalent model show that there was almost no error in the operating condition of the breakaway device compared to the experimental results. Through this work, we believe that the proposed equivalent model of a filter can be applied to the analysis of breakaway devices in hydrogen fueling stations. We will study how to optimize the shape and position of the filter in breakaway devices using the developed equivalent model.

Multiphase CFD Analysis of Microbubble Generator using Swirl Flow (선회유동을 이용한 마이크로버블 발생기의 다상유동 전산유체역학 해석)

  • Yun, S.I.;Kim, H.S.;Kim, J.K.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.35 no.1
    • /
    • pp.27-32
    • /
    • 2022
  • Microbubble technology has been widely applied in various industrial fields. Recently, research on many types of microbubble application technology has been conducted experimentally, but there is a limit in deriving the optimal design and operating conditions. Therefore, if the computational fluid dynamics (CFD) analysis of multiphase flow is used to supplement these experimental studies, it is expected that the time and cost required for prototype production and evaluation tests will be minimized and optimal results will be derived. However, few studies have been conducted on multiphase flow CFD analysis to interpret fluid flow in microbubble generators using swirl flow. In this study, CFD simulation of multiphase flow was performed to analyze the air-water mixing process and fluid flow characteristics in a microbubble generator with a dual-chamber structure. Based on the simulation results, it was confirmed that a negative pressure was formed on the central axis of rotation due to the strong swirling flow. And it could be seen that the air inside the suction tube was introduced into the inner chamber of the microbubble generator. In addition, as the high-speed mixed fluid collided with external water sucked by the negative pressure near the outlet, a large amount of microbubbles was ejected due to the shear force between the two flows flowing in opposite directions.

CFD Analysis for Concept Design of Air Levitation Transport System (공기부양 이송시스템 개념설계를 위한 전산유동해석)

  • Chang H.S.;Park Y.J.;Chang Y.S.;Choi J.B.;Kim Y.J.;Chun P.H.;Kong J.Y.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.81-82
    • /
    • 2006
  • Conveyor-type transporters have been widely used as a typical delivery system of semi-conductor, FPD and other IT-related products. However, as the IT-product is getting larger in size and higher in resolution, several problems are caused by mechanical contacts between the transporter and target object. In this context, recently, lots of efforts are being devoted for development of various contact-free handling systems to get rid of deffets and oil contaminations. The objectives of this paper are to characterize suspension mechanisms and to investigate air flow effects on air levitation transport system. For this purpose, a series of CFD analyses were carried out and the simulation data showed a good agreement with the corresponding experimental ones. It is anticipated that the promising result can be used as a basis for concept design of the transport system.

  • PDF