• Title/Summary/Keyword: CFD++

Search Result 5,763, Processing Time 0.039 seconds

Reynolds Number Effects on Aerodynamic Characteristics of Compressor Cascades for High Altitude Long Endurance Aircraft

  • Kodama, Taiki;Watanabe, Toshinori;Himeno, Takehiro;Uzawa, Seiji
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.195-201
    • /
    • 2008
  • In the jet engines on the aircrafts cruising at high altitude over 20 km and subsonic speed, the Reynolds number in terms of the compressor blades becomes very low. In such an operating condition with low Reynolds number, it is widely reported that total pressure loss of the air flow through the compressor cascades increases dramatically due to separation of the boundary layer and the secondary-flow. But the detail of flow mechanisms causes the total pressure loss has not been fully understood yet. In the present study, two series of numerical investigations were conducted to study the effects of Reynolds number on the aerodynamic characteristics of compressor cascades. At first, the incompressible flow fields in the two-dimensional compressor cascade composed of C4 airfoils were numerically simulated with various values of Reynolds number. Compared with the corresponding experimental data, the numerically estimated trend of total pressure loss as a function of Reynolds number showed good agreement with that of experiment. From the visualized numerical results, the thickness of boundary layer and wake were found to increase with the decrease of Reynolds number. Especially at very low Reynolds number, the separation of boundary layer and vortex shedding were observed. The other series, as the preparatory investigation, the flow fields in the transonic compressor, NASA Rotor 37, were simulated under the several conditions, which corresponded to the operation at sea level static and at 10 km of altitude with low density and temperature. It was found that, in the case of operation at high altitude, the separation region on the blade surface became lager, and that the radial and reverse flow around the trailing edge become stronger than those under sea level static condition.

  • PDF

Firing Test of Core Engine for Pre-cooled Turbojet Engine

  • Taguchi, Hideyuki;Sato, Tetsuya;Kobayashi, Hiroaiki;Kojima, Takayuki;Fukiba, Katsuyoshi;Masaki, Daisaku;Okai, Keiichi;Fujita, Kazuhisa;Hongoh, Motoyuki;Sawai, Shujiro
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.115-121
    • /
    • 2008
  • A core engine for pre-cooled turbojet engines is designed and its component performances are examined both by CFD analyses and experiments. The engine is designed for a flight demonstration of precooled turbojet engine cycle. The engine uses gas hydrogen as fuel. The external boundary including measurement devices is set within $23cm{\times}23cm$ of rectangular cross section, in order to install the engine downstream of the air intake. The rotation speed is 80000 rpm at design point. Mixed flow compressor is selected to attain high pressure ratio and small diameter by single stage. Reverse type main combustor is selected to reduce the engine diameter and the rotating shaft length. The temperature at main combustor is determined by the temperature limit of non-cooled turbine. High loading turbine is designed to attain high pressure ratio by single stage. The firing test of the core engine is conducted using components of small pre-cooled turbojet engine. Gas hydrogen is injected into the main burner and hot gas is generated to drive the turbine. Air flow rate of the compressor can be modulated by a variable geometry exhaust nozzle, which is connected downstream of the core engine. As a result, 75% rotation speed is attained without hazardous vibration and heat damage. Aerodynamic performances of both compressor and turbine are obtained and evaluated independently.

  • PDF

Stability Research on Aerodynamic Configuration Design and Trajectory Analysis for Low Altitude Subsonic Unmanned Air Vehicle

  • Rafique, Amer Farhan;He, LinShu
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.690-699
    • /
    • 2008
  • In this paper a conventional approach for design and analysis of subsonic air vehicle is used. First of all subsonic aerodynamic coefficients are calculated using Computational Fluid Dynamics(CFD) tools and then wind-tunnel model was developed that integrates vehicle components including control surfaces and initial data is validated as well as refined to enhance aerodynamic efficiency of control surfaces. Experimental data and limited computational fluid dynamics solutions were obtained over a Mach number range of 0.5 to 0.8. The experimental data show the component build-up effects and the aerodynamic characteristics of the fully integrated configurations, including control surface effectiveness. The aerodynamic performance of the fully integrated configurations is comparable to previously tested subsonic vehicle models. Mathematical model of the dynamic equations in 6-Degree of Freedom(DOF) is then simulated using MATLAB/SIMULINK to simulate trajectory of vehicle. Effect of altitude on range, Mach no and stability is also shown. The approach presented here is suitable enough for preliminary conceptual design. The trajectory evaluation method devised accurately predicted the performance for the air vehicle studied. Formulas for the aerodynamic coefficients for this model are constructed to include the effects of several different aspects contributing to the aerodynamic performance of the vehicle. Characteristic parameter values of the model are compared with those found in a different set of similar air vehicle simulations. We execute a set of example problems which solve the dynamic equations to find the aircraft trajectory given specified control inputs.

  • PDF

Numerical Investigation on Initiation Process of Spherical Detonation by Direct Initiation with Various Ignition Energy

  • Nirasawa, Takayuki;Matsuo, Akiko
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.45-52
    • /
    • 2008
  • In order to investigate the initiation and propagation processes of a spherical detonation wave induced by direct initiation, numerical simulations were carried out using two-dimensional compressible Euler equations with an axisymmetric assumption and a one-step reaction model based on Arrhenius kinetics with various levels of ignition energy. By varying the amount of ignition energy, three typical initiation behaviors, which were subcritical, supercritical and critical regimes, were observed. Then, the ignition energy of more than $137.5{\times}10^6$ in non-dimensional value was required for initiating a spherical detonation wave, and the minimum ignition energy(i.e., critical energy) was less than that of the one-dimensional simulation reported by a previous numerical work. When the ignition energy was less than the critical energy, the blast wave generated from an ignition source continued to attenuate due to the separation of the blast wave and a reaction front. Therefore, detonation was not initiated in the subcrtical regime. When the ignition energy was more than the minimum initiation energy, the blast wave developed into a multiheaded detonation wave propagating spherically at CJ velocity, and then a cellular pattern radiated regularly out from the ignition center in the supercritical regime. The influence on ignition energy was observed in the cell width near the ignition center, but the cell width on the fully developed detonation remained constant during the expanding of detonation wave due to the consecutive formation of new triple points, regardless of ignition energy. When the ignition energy was equal to the critical energy, the decoupling of the blast wave and a reaction front appeared, as occurred in the subcrtical regime. After that, the detonation bubble induced by the local explosion behind the blast wave expanded and developed into the multiheaded detonation wave in the critical regime. Although few triple points were observed in the vicinity of the ignition core, the regularly located cellular pattern was generated after the onset of the multiheaded detonation. Then, the average cell width on the fully developed detonation was almost to that in the supercritical regime. These numerical results qualitatively agreed with previous experimental works regarding the initiation and propagation processes.

  • PDF

Study on Configuration Design of Inlet and Exhaust Ducts of a Turboprop Engine for the Altitude Test Considering performance losses (성능손실을 고려한 고고도시험용 터보프롭 엔진 흡입구 및 배기구 형상설계에 관한 연구)

  • Kong, C.;Kim, K.;Lim, S.;Yoo, J.;Choi, K.
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.04a
    • /
    • pp.144-152
    • /
    • 2011
  • In order to investigate the operation performance behaviors of the UAV's propulsion system to be operated long time in high altitude, the engine performance tests, which are simulated in the altitude engine test facility should be needed. If the test is performed in a existing altitude engine test facility, additional test apparatuses are required. Among them a proper design of the inlet and exhaust ducts that may directly affect the engine performance is very important. If the design is not adequate, the engine performance loss due to the flow behavior change and the pressure loss may be not similar to the real engine performance. In this work, firstly the engine inlet and exhaust ducts to be mounted to the existing altitude facility are modelled in 3D and its flow behaviors and pressure losses are analyzed using a commercial CFD tool, ANSYS's CFX, and the engine performance with the duct losses is calculated using the performance analysis program developed by C. Kong et al. Finally, the optimized inlet and exhaust ducts' configurations are proposed through the repeated analyses of various duct configurations.

  • PDF

A CFD Study on the Combustion Pressure Oscillation by a Location of a Pressure Transducer inside Closed Vessel (밀폐용기 연소실험 시 센서위치에 따라 변화하는 압력 진동에 대한 수치적 연구)

  • Han, Doo-hee;Ahn, Gil-hwan;Ryu, Byung-tae;Sung, Hong-gye
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.2
    • /
    • pp.66-73
    • /
    • 2018
  • A computational fluid dynamics simulation of pyrotechnic material combustion inside a cylindrical closed vessel was carried out using the Eulerian-Lagrangian method. The 5th order upwind WENO scheme and the improved delayed detached eddy turbulence model were implemented to capture shock waves. The flow structure was analyzed inside the cylindrical vessel with a pressure sensor installed at the side wall center. The analysis revealed that the pressure oscillated because of the shock wave vibration. Additionally, the simulation results with four different sensor tab depths implied that, inside the sensor tab, eddies were generated by the excessively large gap between the sensor diaphragm and the side wall. These eddies caused irregularity to the measured time-pressure curve, which is an undesirable characteristic.

Study on Transient Analysis of Hot Gas Valve with Pintle (핀틀이 적용된 고온 가스 밸브의 비정상상태 해석 기법에 관한 연구)

  • Lee, Kyungwook;Heo, Seonuk;Kwon, Sejin;Lee, Jongkwang
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.2
    • /
    • pp.152-159
    • /
    • 2018
  • A numerical simulation was conducted to establish the analysis methods of the unsteady conjugated heat transfer with a hot gas valve. Two methods are proposed to reduce the computational cost and analysis time of the unsteady conjugate heat transfer; namely, the multi-section analysis method and the one-way analysis method. The multi-section analysis method exhibits relatively high reliability. In the one-way analysis method, the unsteady conjugate heat transfer from the fluid domain to the solid domain was simulated from the analysis results of the steady-state flowfield. The incipient accuracy of the analysis results obtained by the one-way analysis method was slightly lower than that of the results obtained by the multi-section analysis method. However, the discrepancy became smaller with time, as the analysis progressed.

Forced Vibration and Structural Response Prediction for Impeller in Resonant Conditions due to Diffuser Vanes (디퓨저 베인에 기인한 공진조건에서의 임펠러 강제진동 및 구조응답 예측)

  • Kim, Yongse;Kong, Dongjae;Shin, SangJoon;Park, Kihoon;Im, Kangsoo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.4
    • /
    • pp.24-35
    • /
    • 2018
  • Impeller blades in the centrifugal compressor are subjected to periodic aerodynamic excitations by interactions between the impeller and the diffuser vanes (DV) in resonant conditions. This may cause high cycle fatigue (HCF) and eventually result in failure of the blades. In order to predict the structural response accurately, the aerodynamic excitation and the major resonant conditions were predicted using unsteady computational fluid dynamics (CFD) and structural analysis. Then, a forced vibration analysis was performed by going through one-way fluid-structure interaction (FSI). A numerical analysis procedure was established to evaluate the structural safety with respect to HCF. The numerical analysis procedure proposed in this paper is expected to contribute toward preventing HCF problems in the initial design stage of an impeller.

Integrated fire dynamics and thermomechanical modeling framework for steel-concrete composite structures

  • Choi, Joonho;Kim, Heesun;Haj-ali, Rami
    • Steel and Composite Structures
    • /
    • v.10 no.2
    • /
    • pp.129-149
    • /
    • 2010
  • The objective of this study is to formulate a general 3D material-structural analysis framework for the thermomechanical behavior of steel-concrete structures in a fire environment. The proposed analysis framework consists of three sequential modeling parts: fire dynamics simulation, heat transfer analysis, and a thermomechanical stress analysis of the structure. The first modeling part consists of applying the NIST (National Institute of Standards and Technology) Fire Dynamics Simulator (FDS) where coupled CFD (Computational Fluid Dynamics) with thermodynamics are combined to realistically model the fire progression within the steel-concrete structure. The goal is to generate the spatial-temporal (ST) solution variables (temperature, heat flux) on the surfaces of the structure. The FDS-ST solutions are generated in a discrete form. Continuous FDS-ST approximations are then developed to represent the temperature or heat-flux at any given time or point within the structure. An extensive numerical study is carried out to examine the best ST approximation functions that strike a balance between accuracy and simplicity. The second modeling part consists of a finite-element (FE) transient heat analysis of the structure using the continuous FDS-ST surface variables as prescribed thermal boundary conditions. The third modeling part is a thermomechanical FE structural analysis using both nonlinear material and geometry. The temperature history from the second modeling part is used at all nodal points. The ABAQUS (2003) FE code is used with external user subroutines for the second and third simulation parts in order to describe the specific heat temperature nonlinear dependency that drastically affects the transient thermal solution especially for concrete materials. User subroutines are also developed to apply the continuous FDS-ST surface nodal boundary conditions in the transient heat FE analysis. The proposed modeling framework is applied to predict the temperature and deflection of the well-documented third Cardington fire test.

A Study on Numerical Analysis of Flow Uniformity According to Length and Degree Change of Mixed-Evaporator in 500 PS SCR Reactor (500 PS SCR 반응기 혼합증발관 길이와 각도 변화에 따른 유동균일도에 대한 수치해석적 연구)

  • Seong, Hongseok;Lee, Chungho;Suh, Jeongse
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.28 no.8
    • /
    • pp.337-342
    • /
    • 2016
  • A marine SCR System is emerging as an alternative to comply with NOx Tier III Emission standards, a restriction on greenhouse gas from vessels implemented by the International Maritime Organization. The system is greatly affected by the uniformity of the fluid flowing into the catalyst, so the performance of the catalyst of an SCR system needs to be guaranteed. This study conducted research on a mixed evaporator of an SCR system, which is one of the factors affecting the uniformity of the fluid. When the angle of the mixed evaporator is set to $90^{\circ}$, the fluid uniformity is at its highest at 83%, under the condition that the length of the mixed evaporator be 3.5 D. When the length was 3.5 D and less, the fluid uniformity had a tendency to improve relative to the case without a bent pipe. However, a longer mixed evaporator results in a more perfect liquidity development in the pipe with a liquidity distribution similar to the case where no curved pipe is formed in front of the catalyst. A lower angle for the mixed evaporator results in a lower flow uniformity, and a longer length of the mixed evaporator results in a lower difference in the flow uniformity caused by the angle. The flow uniformity can be improved by 6% with a mixed evaporator, which confirmed that all factors applied to an SCR system have a close relationship with the efficiency.