• Title/Summary/Keyword: CFD++

Search Result 5,763, Processing Time 0.034 seconds

INVESTIGATION OF THE OPERATIONAL PRINCIPLE AND PARAMETRIC STUDY ON A DRY PASTE SEPARATOR EQUIPED WITH A ROTOR - I. THEORETICAL STUDY (로터 장착 건식 미분 분리기의 작동원리 규명 및 파라미터 연구 -I. 이론 해석)

  • Park, S.U.;Kang, Y.S.;Kang, S.;Suh, Y.K.
    • Journal of computational fluids engineering
    • /
    • v.20 no.4
    • /
    • pp.70-80
    • /
    • 2015
  • Construction waste is known to include a large part of coarse and fine aggregates, which can be recirculated in the industry. Separating those aggregates economically from the waste has been thus considered to be one of the most important issues in this field. In particular, paste mixed in the waste causes significant complain from the inhabitants living near the place where waste-processing equipments are built and operated. In this study, we investigate the operational principle of a newly developed paste separator by using theoretical (in this first part) and CFD (in the second part) analysis. The separator consists of a rotor which turned out to play a significant role in separating those pastes from the aggregates. Under suitable assumptions regarding the air flow velocity as well as the particle velocity, we show that particles can be stagnant at the outlet of the roto channel for a wide range of parameter values, which allow the particles to get enough time to settle down via the gravitation. We also demonstrate such phenomenon by using a simple numerical simulation.

STUDY ON VIEW FACTOR CALCULATION FOR RADIATIVE HEAT TRANSFER BY USING THE MESH SUBDIVISION METHOD (격자 세분화 방법을 고려한 복사열전달 형상계수 계산 기법 연구)

  • Kim, D.G.;Han, K.I.;Choi, J.H.;Lee, J.J.;Kim, T.K.
    • Journal of computational fluids engineering
    • /
    • v.19 no.1
    • /
    • pp.1-6
    • /
    • 2014
  • Since experiments on the actual operational status are said to be very impractical because of their economic and repeatability problems, it is difficult to understand the thermal profiles of aerospace or military equipments. Thus, the CFD codes with considering the radiation heat transfer are used to compensate the defect. In case, analyzing the radiation exchanges between the object surfaces are very important. Because the temperature and the IR signal distributions of the object surface are significantly affected by the radiative heat transfer. To achieve accurate thermal radiation exchange between surfaces, it is important to calculate the radiation view factor precisely. Finer subdivision of meshes can be used to increase the accuracy of radiation view factor, but if the mesh is subdivided infinitely, the time required for calculation increases significantly and thus decreasing the efficiency. If the subdivision is not sufficient, assurance of accuracy is not guaranteed. In this paper, optimal mesh subdivision method using the solid angle has been successfully tested and found to be useful in increasing the efficiency of calculating the shape factors.

A NUMERICAL STUDY ON THE EFFECT OF VEHICLE-TO-VEHICLE DISTANCE ON THE AERODYNAMIC CHARACTERISTICS OF A MOVING VEHICLE (차간 거리가 주행차량의 공력특성에 미치는 영향에 관한 수치해석 연구)

  • Kim, D.G.;Kim, C.H.
    • Journal of computational fluids engineering
    • /
    • v.19 no.2
    • /
    • pp.66-71
    • /
    • 2014
  • Aerodynamic design of a vehicle has very important meaning on the fuel economy, dynamic stability and the noise & vibration of a moving vehicle. In this study, the correlation of aerodynamic effect between two model vehicles moving inline on a road was studied with the basic SAE model vehicle. Drag and lift are two main physical forces acting on the vehicle and both of them directly effect on the fuel economy and driving stability of the vehicle. For the research, the distance between two vehicles is varied from 5m to 30m at the fixed vehicle speed, 100km/h and the side-wind was assumed to be zero. The main issue for this numerical research is on the understanding of the interaction forces; lift and drag between two vehicles formed inline. From the study, it was found that as the distance between two vehicles is closer, the drag force acting on both the front and rear vehicle decreases and the lift force has same trend for both vehicle. As the distance(D) is 5m, the drag of the front vehicle reduced 7.4% but 28.5% for the rear-side vehicle. As the distance is 30m, the drag of the rear vehicle is still reduced to 22% compared to the single driving.

Performance Analysis on a Hydrogen Recirculation Ejector for Fuel Cell Vehicle (연료전지 수소재순환 이젝터 성능 해석)

  • NamKoung, Hyuck-Joon;Moon, Jong-Hoon;Jang, Seock-Young;Hong, Chang-Oug;Lee, Kyoung-Hoon
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.256-259
    • /
    • 2008
  • Ejector system is a device to transport a low-pressure secondary flow by using a high-pressure primary flow. Ejector system is, in general, composed of a primary nozzle, a mixing section, a casing part for suction of secondary flow and a diffuser. It can induce the secondary flow or affect the secondary chamber pressure by both shear stress and pressure drop which are generated in the primary jet boundary. Ejector system is simple in construction and has no moving parts, so it can not only compress and transport a massive capacity of fluid without trouble, but also has little need for maintenance. Ejectors are widely used in a range of applications such as a turbine-based combined-cycle propulsion system and a high altitude test facility for rocket engine, pressure recovery system, desalination plant and ejector ramjet etc. The primary interest of this study is to set up an applicable model and operating conditions for an ejector in the condition of sonic and subsonic, which can be extended to the hydrogen fuel cell vehicle. Experimental and theoretical investigation on the sonic and subsonic ejectors with a converging-diverging diffuser was carried out. Optimization technique and numerical simulation was adopted for an optimal geometry design and satisfying the required performance at design point of ejector for hydrogen recirculation. Also, some ejectors with a various of nozzle throat and mixing chamber diameter were manufactured precisely and tested for the comparison with the calculation results.

  • PDF

A NUMERICAL STUDY ON THE EFFECT OF DOWN-WASH OF A WING-BODY ON ITS AERODYNAMIC CHARACTERISTICS (익형 동체의 하강기류(Down-wash)가 공기역학적 특성에 미치는 영향에 관한 수치해석연구)

  • Yoon, K.H.;Kim, C.H.
    • Journal of computational fluids engineering
    • /
    • v.18 no.3
    • /
    • pp.8-13
    • /
    • 2013
  • Drag reduction of a running vehicle is very important issue for the energy savings and emission reduction of its power train. Especially for a solar powered electric vehicle, the drag reduction and weight lightening are two serious problems to be solved to extend its driving distance under the given energy condition. In this study, the ground effect of an airfoil shaped road vehicle was studied for an optimum body design of an ultra-light solar powered electric vehicle. Clark-Y airfoil type was adopted to the body shape of the model vehicle to reduce aerodynamic drag. From the study, it was found that the drag of the model vehicle was reduced as the height(h) between ground and the lower surface of the model vehicle was decreased. It is due to the reduction of the down-wash decreasing the induced drag of the vehicle. The lift was also decreased as the height decreased. It is due to the turbulent boundary layer developed beneath the vehicle body. The drag is classified into two types; the form and friction drag. The fraction of form drag to friction one is 76 to 24 on the model vehicle. As the height(h) of the model vehicle from the ground surface increases the form drag also increases but the friction drag is in reverse.

ANALYSIS OF EIGEN VALUES FOR EFFECTIVE CHOICE OF SNAPSHOT DATA IN PROPER ORTHOGONAL DECOMPOSITION (적합직교분해 기법에서의 효율적인 스냅샷 선정을 위한 고유값 분석)

  • Kang, H.M.;Jun, S.O.;Yee, K.
    • Journal of computational fluids engineering
    • /
    • v.22 no.1
    • /
    • pp.59-66
    • /
    • 2017
  • The guideline of selecting the number of snapshot dataset, $N_s$ in proper orthogonal decomposition(POD) was presented via the analysis of Eigen values based on the singular value decomposition(SVD). In POD, snapshot datasets from the solutions of Euler or Navier-Stokes equations are utilized to SVD and a reduced order model(ROM) is constructed as the combination of Eigen vectors. The ROM is subsequently applied to reconstruct the flowfield data with new set of flow conditions, thereby enhancing the computational efficiency. The overall computational efficiency and accuracy of POD is dependent on the number of snapshot dataset; however, there is no reliable guideline of determining $N_s$. In order to resolve this problem, the order of maximum to minimum Eigen value ratio, O(R) from SVD was analyzed and presented for the decision of $N_s$; in case of steady flow, $N_s$ should be determined to make O(R) be $10^9$. For unsteady flow, $N_s$ should be increased to make O(R) be $10^{11\sim12}$. This strategy of selecting the snapshot dataset was applied to two dimensional NACA0012 airfoil and vortex flow problems including steady and unsteady cases and the numerical accuracies according to $N_s$ and O(R) were discussed.

CFD (Computational Fluid Dynamics) Study on Partial-Load Combustion Characteristics of a 4-Step-Grate Wood Pellet Boiler (4단 화격자 목재 펠릿 보일러의 부분부하 연소해석)

  • Ahn, Joon;Jang, Jun Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.4
    • /
    • pp.365-371
    • /
    • 2014
  • A numerical simulation was conducted for the combustion chamber of a 4-step grate-firing boiler for wood pellet fuel. The flame is extended to the exit of combustion chamber, which is reproduced by present numerical method based on a homogeneous reaction model. Flow field from the simulation shows a strong recirculation flow at the upstream corner of the chamber, along which the flame is extended to the exit. These combustion and flow characteristics remain unchanged for partial load operations, which suggest modification of the combustion chamber structure rather than resizing should be effective to improve combustion characteristics. Possible modifications for combustion chamber are suggested such as relocating its exit, increasing the number of grate steps or installing internals such as guide baffles.

Cavitation Visualization Test for Shape Optimization of Bottom Plug in Reversing Valve (공동현상 가시화 실험을 통한 절환밸브 바텀플러그 형상 최적화)

  • Kim, Tae An;Lee, Myeong Gon;Han, Seung Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.11
    • /
    • pp.913-918
    • /
    • 2016
  • A three-way reversing valve, which provides rapid and accurate changes in the water flow direction without requiring any precise control device, is used in automotive washing machines to remove oil and dirt that remain on the machined engine and transmission blocks. Because of the complicated shape of the bottom-plug, however, cavitation occurs in the plug. In this study, the cavitation index and POC (percent of cavitation) were used to quantitatively evaluate the cavitation effect occurring in the bottom-plug on the downstream side. An optimal shape design was conducted via parametric study with a simple CAE model to avoid time-consuming CFD analysis and hard-to-achieve convergence. To verify the results of the numerical analysis, a flow visualization test was conducted using a specimen prepared according to ISA-RP75.23. In this test, the flow characteristics, such as cavitation occurring on the downstream side, were investigated using flow test equipment that included a valve, pump, flow control system, and high-speed camera.

Wake effects of an upstream bridge on aerodynamic characteristics of a downstream bridge

  • Chen, Zhenhua;Lin, Zhenyun;Tang, Haojun;Li, Yongle;Wang, Bin
    • Wind and Structures
    • /
    • v.29 no.6
    • /
    • pp.417-430
    • /
    • 2019
  • To study the wake influence of an upstream bridge on the wind-resistance performance of a downstream bridge, two adjacent long-span cable-stayed bridges are taken as examples. Based on wind tunnel tests, the static aerodynamic coefficients and the dynamic response of the downstream bridge are measured in the wake of the upstream one. Considering different horizontal and vertical distances, the flutter derivatives of the downstream bridge at different angles of attack are extracted by Computational Fluid Dynamics (CFD) simulations and discussed, and the change in critical flutter state is further studied. The results show that a train passing through the downstream bridge could significantly increase the lift coefficient of the bridge which has the same direction with the gravity of the train, leading to possible vertical deformation and vibration. In the wake of the upstream bridge, the change in lift coefficient of the downstream bridge is reduced, but the dynamic response seems to be strong. The effect of aerodynamic interference on flutter stability is related to the horizontal and vertical distances between the two adjacent bridges as well as the attack angle of incoming flow. At large angles of attack, the aerodynamic condition around the downstream girder which may drive the bridge to torsional flutter instability is weakened by the wake of the upstream bridge, and the critical flutter wind speed increases at this situation.

The 3D Numerical Analysis on the Turbulent at 40° Crosswind, for the Predictions of Flight Stability at Take-off and Landing (이·착륙 비행 안정성 예측을 위한 측풍 40° 방향에 대한 3차원 수치해석)

  • Sheen, Dong-Jin;Kim, Do-Hyun;Park, Soo-Bok
    • Journal of Advanced Navigation Technology
    • /
    • v.16 no.2
    • /
    • pp.179-189
    • /
    • 2012
  • The aim of this paper is to research the change in the turbulent flow and the AOA(Angle Of Attack) occurred by $40^{\circ}$ crosswind to the direction of runway through the three-dimensional numerical analysis and to predict the take-off and landing flight stability. As a result, the maximum amplitude of AOA variation on runway reached $2^{\circ}$ within 3 second because of the wake formed by the constructions in the vicinity of the airport, and the overall effects appeared as an irregular aperiodic forms. Additionally, it was observed that the layout and shape of the buildings effected on the strength of turbulence directly, and the rapid flow generated between the buildings changed into stronger wake and eventually expected that the flow raises serious take-off and landing flight instability.