• 제목/요약/키워드: CFD(Computational Fluid Dynamics

검색결과 2,022건 처리시간 0.031초

태양열과 지열을 이용한 난방용 공기순환시스템 기초연구 - 태양열을 이용한 트롬월식의 축열성능 중심으로 - (A Basic Study on the Air Circulation System for Heating using Solar and Geothermal Heat - Focused on Trombe Wall Thermal Storage Performance using Solar Heat -)

  • 김병윤;최용석
    • 한국농촌건축학회논문집
    • /
    • 제19권4호
    • /
    • pp.49-56
    • /
    • 2017
  • Each country in the world currently concentrates on shifting into clean energy, which can be alternative energy, for global environment protection and solution to the problem of fossil fuel depletion. The Korean government is predicted to develop renewable energy, such as solar power, ground power, and offshore wind power, and to increase their supply ratios by ending the use of coals and nuclear power plants. This study conducted experiments on thermal storage performance of Trombe wall thermal storage materials using solar power and simulations in order to offer baseline data for the development of a hybrid air circulation system for heating that can maximize efficiency by simultaneously using solar and geothermal power. The study results are as follows: (1) In all the specimens with 3m, 5m, and 7m in the length of thermal storage pipe, $5.7^{\circ}C$, $7.8^{\circ}C$, and $10.5^{\circ}C$ rose, respectively, as the thermal storage effect of the specimens attaching insulation film and black tape to the general funnel. They were most excellent in terms of thermal storage effect. (2) As a result of thermal performance evaluation on the II type specimens, II-3 ($7.8^{\circ}C$ rise) > II-4 ($5.3^{\circ}C$ rise) > II-1 ($3.9^{\circ}C$ rise) > II-2 ($2.3^{\circ}C$ rise) was revealed, and thus II-3 (insulation film + black tape) was most effective as shown in the I type. (3) This study analyzed air current and temperature distribution inside of the greenhouse by linking actually measured values and simulation interpretation results through the interpretation of CFD (computational fluid dynamics). As a result, the parts absorbing heat and discharging heat around the thermal storage pipe could be visibly classified, and temperature distribution inside of the greenhouse around the thermal storage pipe could be figured out.

Research Investigations at the Municipal (2×35) and Clinical (2×5 MW) Waste Incinerators in Sheffield, UK

  • Swithenbank, J.;Nasserzadeh, V.;Ewan, B.C.R.;Delay, I.;Lawrence, D.;Jones, B.
    • 청정기술
    • /
    • 제2권2호
    • /
    • pp.100-125
    • /
    • 1996
  • After recycle of spent materials has been optimised, there remains a proportion of waste which must be dealt with in the most environmentally friendly manner available. For materials such as municipal waste, clinical waste, toxic waste and special wastes such as tyres, incineration is often the most appropriate technology. The study of incineration must take a process system approach covering the following aspects: ${\bullet}$ Collection and blending of waste, ${\bullet}$ The two stage combustion process, ${\bullet}$ Quenching, scrubbing and polishing of the flue gases, ${\bullet}$ Dispersion of the flue gases and disposal of any solid or liquid effluent. The design of furnaces for the burning of a bed of material is being hampered by lack of an accurate mathematical model of the process and some semi-empirical correlations have to be used at present. The prediction of the incinerator gas phase flow is in a more advanced stage of development using computational fluid dynamics (CFD) analysis, although further validation data is still required. Unfortunately, it is not possible to scale down many aspects of waste incineration and tests on full scale incinerators are essencial. Thanks to a close relationship between SUWIC and Sheffield Heat&Power Ltd., an extended research programme has been carried out ar the Bernard Road Incinerator plant in Sheffield. This plant consists of two Municipal(35 MW) and two Clinical (5MW) Waste Incinerators which provide district heating for a large part of city. The heat is distributed as hot water to commercial, domestic ( >5000 dwelling) and industrial buildings through 30km of 14" pipes plus a smaller pipe distribution system. To improve the economics, a 6 MW generator is now being added to the system.

  • PDF

Wind profile management and blockage assessment for a new 12-fan Wall of Wind facility at FIU

  • Aly, Aly Mousaad;Chowdhury, Arindam Gan;Bitsuamlak, Girma
    • Wind and Structures
    • /
    • 제14권4호
    • /
    • pp.285-300
    • /
    • 2011
  • Researchers at the International Hurricane Research Center (IHRC), Florida International University (FIU), are working in stages on the construction of a large state-of-the-art Wall of Wind (WoW) facility to support research in the area of Wind Engineering. In this paper, the challenges of simulating hurricane winds for the WoW are presented and investigated based on a scale model study. Three wind profiles were simulated using airfoils, and/or adjustable planks mechanism with and without grids. Evaluations of flow characteristics were performed in order to enhance the WoW's flow simulation capabilities. Characteristics of the simulated wind fields are compared to the results obtained from a study using computational fluid dynamics (CFD) and also validated via pressure measurements on small-scale models of the Silsoe cube building. Optimal scale of the test model and its optimal distance from the WoW contraction exit are determined - which are two important aspects for testing using an open jet facility such as the WoW. The main objective of this study is to further the understanding of the WoW capabilities and the characteristics of its test section by means of intensive tests and validations at small scale in order to apply this knowledge to the design of the full-scale WoW and for future wind engineering testing.

Wind pressure on a solar updraft tower in a simulated stationary thunderstorm downburst

  • Zhou, Xinping;Wang, Fang;Liu, Chi
    • Wind and Structures
    • /
    • 제15권4호
    • /
    • pp.331-343
    • /
    • 2012
  • Thunderstorm downbursts are responsible for numerous structural failures around the world. The wind characteristics in thunderstorm downbursts containing vortex rings differ with those in 'traditional' boundary layer winds (BLW). This paper initially performs an unsteady-state simulation of the flow structure in a downburst (modelled as a impinging jet with its diameter being $D_{jet}$) using a computational fluid dynamics (CFD) method, and then analyses the pressure distribution on a solar updraft tower (SUT) in the downburst. The pressure field shows agreement with other previous studies. An additional pair of low-pressure region and high-pressure region is observed due to a second vortex ring, besides a foregoing pair caused by a primary vortex ring. The evolutions of pressure coefficients at five orientations of two representative heights of the SUT in the downburst with time are investigated. Results show that pressure distribution changes over a wide range when the vortices are close to the SUT. Furthermore, the fluctuations of external static pressure distribution for the SUT case 1 (i.e., radial distance from a location to jet center x=$D_{jet}$) with height are more intense due to the down striking of the vortex flow compared to those for the SUT case 2 (x=$2D_{jet}$). The static wind loads at heights z/H higher than 0.3 will be negligible when the vortex ring is far away from the SUT. The inverted wind load cases will occur when vortex is passing through the SUT except on the side faces. This can induce complex dynamic response of the SUT.

전산 해석을 이용한 다중연돌의 유체유발진동 (Evaluation of Wind-Induced Vibration for Multiple Stacks Using Numerical Analysis)

  • 양광혁;박재관;김현준;백송열;박순태
    • 플랜트 저널
    • /
    • 제12권3호
    • /
    • pp.24-31
    • /
    • 2016
  • 풍진동(Wind-induced vibration)은 바람에 의해 구조물에 진동이 발생하는 현상으로써 세장비가 큰 열기기 Stack 설계시 고려해야 할 중요한 사항이다. 따라서, 국제 규격에는 풍진동에 대한 설계 인자와 각 범위에 대해 필요한 고려 사항을 정의하고 있다. 규격에 의한 설계 검증은 몇몇 인자를 이용하여 간단하게 확인이 가능하다는 장점이 있는 반면, 실제 풍진동에 의한 영향을 정량적으로 평가하지 않기 때문에 실제 필요한 것보다 과도한 설계를 요구할 수 있다는 단점이 있다. 또한 여러 제약조건으로 Code 상의 요구조건을 만족하지 못하는 경우 실제 시스템의 거동을 예측할 수 없다는 단점이 있다. 이러한 점을 보완하기 위해 CFD 와 FEM 등의 수치적 해석 방법을 통해 풍진동이 실제 Stack에 미치는 영향을 해석하여 설계 적정성을 검증하여 Code 상의 요구 조건과 비교하였다.

  • PDF

고병원성 조류인플루엔자 (HPAI)의 에어로졸을 통한 공기 전파 예측을 위한 공기유동학적 확산 모델 연구 (Aerodynamic Approaches for the Predition of Spread the HPAI (High Pathogenic Avian Influenza) on Aerosol)

  • 서일환;이인복;문운경;홍세운;황현섭;;권경석;김기연
    • 한국농공학회논문집
    • /
    • 제53권1호
    • /
    • pp.29-36
    • /
    • 2011
  • HPAI (High pathogenic avian influenza) which is a disease legally designated as an epidemic generally shows rapid spread of disease resulting in high mortality rate as well as severe economic damages. Because Korea is contiguous with China and southeast Asia where HPAI have occurred frequently, there is a high risk for HPAI outbreak. A prompt treatment against epidemics is most important for prevention of disease spread. The spread of HPAI should be considered by both direct and indirect contact as well as various spread factors including airborne spread. There are high risk of rapid propagation of HPAI flowing through the air because of collective farms mostly in Korea. Field experiments for the mechanism of disease spread have limitations such as unstable weather condition and difficulties in maintaining experimental conditions. In this study, therefore, computational fluid dynamics which has been actively used for mass transfer modeling were adapted. Korea has complex terrains and many livestock farms are located in the mountain regions. GIS numerical map was used to estimate spreads of virus attached aerosol by means of designing three dimensional complicated geometry including farm location, road network, related facilities. This can be used as back data in order to take preventive measures against HPAI occurrence and spread.

온도 제한조건을 고려한 이동통신 모듈의 히트싱크 최적설계 (Design Optimization of a Heat Sink for Mobile Telecommunication Module Satisfying Temperature Limits)

  • 정승현;정현수;이용빈;최동훈
    • 대한기계학회논문집A
    • /
    • 제35권2호
    • /
    • pp.183-190
    • /
    • 2011
  • 최근 이동통신 가입자의 증가로 인해 기지국의 수요도 증가하게 되었다. 하지만 기지국 설치 장소의 부족으로 인해 이동통신모듈의 크기가 소형화 되어야 할 필요성이 생겼다. 이동통신모듈의 소형화를 위해서는 모듈 겉면에 부착된 히트싱크의 크기가 소형화 되어야 한다. 또한 모듈의 열적 안정성을 보장하기 위해 설치된 전자부품의 온도가 허용온도보다 낮아야 한다. 이를 위해 상용 PIDO(Process Integration and Design Optimization) 툴인 PIAnO와 전산유체역학 프로그램인 FLOTHERM을 사용하여 전자부품의 온도를 허용온도보다 낮게 유지시키면서 히트싱크의 부피를 최소화하였다. 그 결과, 이동통신 모듈에 설치된 전자부품의 허용온도를 만족하면서 모듈의 부피를 41.9% 감소시킬 수 있었다.

밀폐용기 연소실험 시 센서위치에 따라 변화하는 압력 진동에 대한 수치적 연구 (A CFD Study on the Combustion Pressure Oscillation by a Location of a Pressure Transducer inside Closed Vessel)

  • 한두희;안길환;류병태;성홍계
    • 한국추진공학회지
    • /
    • 제22권2호
    • /
    • pp.66-73
    • /
    • 2018
  • 밀폐용기 내 Zirconium/Potassium Perchlorate의 연소를 수치적 모델링을 통해 전산해석을 수행하였다. 5차 WENO 공간차분법과 improved delayed detached eddy (IDDES) 난류모델을 사용하여 충격파가 동반되는 내부 유동구조를 모사하였고, 라그랑지안 연소모델을 통해 화약 입자를 계산하였다. 옆면 중앙에 센서가 설치된 원통형 밀폐용기 내부 유동분석을 통해 압력 진동이 발생하는 원인을 규명하였다. 또한 센서 다이어프램 깊이 변화에 따라 측정되는 압력 데이터를 실험값과 비교분석 하였다. 그 결과 센서 탭의 깊이가 약 2.36 mm 이상으로 커지면 유동속도가 아음속으로 감쇠하고 복잡한 eddy가 발생하여 측정값에 큰 불규칙성을 야기하는 현상을 관측하였다.

시스템 에어컨 설치 공간의 실내공기질 특성에 관한 연구 (A Study on Characteristics of Indoor- Air-Quality in Interior Space Equipped with System Air-Conditioner)

  • 이상원;김종민;염승원;조대근;최재붕;김석우
    • 설비공학논문집
    • /
    • 제20권5호
    • /
    • pp.304-313
    • /
    • 2008
  • This paper investigates the indoor-air-quality (IAQ) characteristics of the interior space equipped with system air-conditioner. The behaviors of individual variables such as temperature, humidity and concentration of carbon dioxide ($CO_2$) that influence on IAQ of the interior space were characterized under various cooling conditions by numerical and experimental studies. The numerical analysis predicting the temperature behavior of the interior space was conducted, and its results showed a good agreement with the experimental ones. The $CO_2$ concentration and humidity were measured and their time dependent behaviors were monitored and analyzed. From the results, it was found that there existed the differences of the time-dependent behaviors of IAQ variables according to the locations. In addition, it is demonstrated that the large discharge angle of $45^{\circ}$ made the temperature profile more irregular and the high discharge flow of 5.34 m/s produced similar temperature profiles at three different sensing locations. Finally, the humidity of interior space was less sensitive to the changes of the air cooling conditions than the case of temperature and the $CO_2$ concentration increase mainly depended on the number of individuals inside the space.

MR Tanker 실선 및 모형선 프로펠러 캐비테이션 및 변동압력 수치해석 연구 (Numerical Study on Propeller Cavitation and Pressure Fluctuation of Model and Full Scale ship for a MR Tanker)

  • 박일룡;김기섭;김제인;설한신;박영하;안종우
    • 대한조선학회논문집
    • /
    • 제57권1호
    • /
    • pp.35-44
    • /
    • 2020
  • Propeller cavitation extent, pressure fluctuation induced by cavitation, pressure distribution on propeller blade, total velocity distribution and nominal wake distribution for a MR Taker were computed in both conditions of model test and sea trial using a code STAR-CCM+. Then some of the results were compared with model test data at LCT and full-scale measurement (Ahn et al (2014); Kim et al (2014)] in order to confirm the availability of a numerical prediction method and to get the physical insight of local flow around a ship and propeller. The nominal wake distributions computed and measured by LDV velocimeter on the variation of on-coming velocity show the wake contraction characteristics proposed by Hoekstra (1974). The numerical prediction of propeller cavitation extent on a blade angular position and pressure fluctuation level on each location of pressure sensors are very similar with the experimental results.