• 제목/요약/키워드: CFD(Computational Fluid Dynamics

검색결과 2,024건 처리시간 0.029초

Numerical investigation of truck aerodynamics on several classes of infrastructures

  • Alonso-Estebanez, Alejandro;del Coz Diaz, Juan J.;Rabanal, Felipe P.A lvarez;Pascual-Munoz, Pablo;Nieto, Paulino J. Garcia
    • Wind and Structures
    • /
    • 제26권1호
    • /
    • pp.35-43
    • /
    • 2018
  • This paper describes the effect of different testing parameters (configuration of infrastructure and truck position on road) on truck aerodynamic coefficients under cross wind conditions, by means of a numerical approach known as Large Eddy Simulation (LES). In order to estimate the air flow behaviour around both the infrastructure and the truck, the filtered continuity and momentum equations along with the Smagorinsky-Lilly model were solved. A solution for these non-linear equations was approached through the finite volume method (FVM) and using temporal and spatial discretization schemes. As for the results, the aerodynamic coefficients acting on the truck model exhibited nearly constant values regardless of the Reynolds number. The flat ground is the infrastructure where the rollover coefficient acting on the truck model showed lowest values under cross wind conditions (yaw angle of $90^{\circ}$), while the worst infrastructure studied for vehicle stability was an embankment with downward-slope on the leeward side. The position of the truck on the road and the value of embankment slope angle that minimizes the rollover coefficient were determined by successfully applying the Response Surface Methodology.

2차원 고양력장치의 플랩 형상 및 위치 최적화 (Optimization of Flap Shape and Position for Two-dimensional High Lift Device)

  • 박영민;강형민;정진덕;이해창
    • 항공우주시스템공학회지
    • /
    • 제7권3호
    • /
    • pp.1-6
    • /
    • 2013
  • Numerical optimization of two dimensional high lift configuration was performed with flow solver and optimization method based on RSM(Response Surface Model). Navier-Stokes solver with Spalart-Allmaras turbulence model was selected for the simulation of highly complex and separated flows on the flap. For the simultaneous optimization of both flap shape and setting (gap/overlap), 10 design variables (eight variables for flap shape variation and two variables for flap setting) were chosen. In order to generate the response surface model, 128 experimental points were selected for 10 design variables. The objective function considering maximum lift coefficient, lift to drag ratio and lift coefficient at specific angle of attack was selected to reduce flow separation on the flap surface. The present method was applied to two dimensional fowler flap in landing configuration. After applying the present method, it was shown that the optimized high lift configuration had less flow separation on the flap surface and lift to drag ratio was suppressed over entire angle of attack range.

성산 풍력발전단지의 연간발전량 예측 정확도 평가 (Accuracy Assessment of Annual Energy Production Estimated for Seongsan Wind Farm)

  • 주범철;신동헌;고경남
    • 한국태양에너지학회 논문집
    • /
    • 제36권2호
    • /
    • pp.9-17
    • /
    • 2016
  • In order to examine how accurately the wind farm design software, WindPRO and Meteodyn WT, predict annual energy production (AEP), an investigation was carried out for Seongsan wind farm of Jeju Island. The one-year wind data was measured from wind sensors on met masts of Susan and Sumang which are 2.3 km, and 18 km away from Seongsan wind farm, respectively. MERRA (Modern-Era Retrospective Analysis for Research and Applications) reanalysis data was also analyzed for the same period of time. The real AEP data came from SCADA system of Seongsan wind farm, which was compare with AEP data predicted by WindPRO and Meteodyn WT. As a result, AEP predicted by Meteodyn WT was lower than that by WindPRO. The analysis of using wind data from met masts led to the conclusion that AEP prediction by CFD software, Meteodyn WT, is not always more accurate than that by linear program software, WindPRO. However, when MERRA reanalysis data was used, Meteodyn WT predicted AEP more accurately than WindPRO.

Internal modifications to reduce pollutant emissions from marine engines. A numerical approach

  • Lamas, M.I.;Rodriguez, C.G.;Rodriguez, J.D.;Telmo, J.
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제5권4호
    • /
    • pp.493-501
    • /
    • 2013
  • Taking into account the increasingly stringent legislation on emissions from marine engines, this work aims to analyze several internal engine modifications to reduce $NO_x$ (nitrogen oxides) and other pollutants. To this end, a numerical model was employed to simulate the operation cycle and characterize the exhaust gas composition. After a preliminary validation process was carried out using experimental data from a four-stroke, medium-speed marine engine, the numerical model was employed to study the influence of several internal modifications, such as water addition from 0 to 100% water to fuel ratios, exhaust gas recirculation from 0 to 100% EGR rates, modification of the overlap timing from 60 to $120^{\circ}$, modification of the intake valve closing from 510 to $570^{\circ}$, and modification of the cooling water temperature from 70 to $90^{\circ}C$. $NO_x$ was reduced by nearly 100%. As expected, it was found that, by lowering the combustion temperature, there is a notable reduction in $NO_x$, but an increase in CO (carbon monoxide), HC (hydrocarbons) and consumption.

다공성 매질의 형상 변화에 따른 접시형 고온 태양열 흡수기의 열성능 평가 (Heat Transfer Analysis of High Temperature Dish-type Solar Receiver with the Variation of Porous Material)

  • 이주한;서주현;오상준;이진규;조현석;서태범
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2008년도 추계학술발표대회 논문집
    • /
    • pp.238-244
    • /
    • 2008
  • A numerical and experimental studies are carried out to investigate the heat transfer characteristics of 5kWth dish-type solar air receiver. Measured solar radiation and temperatures at several different locations are used as boundary conditions for numerical simulation. Many parameters' effects (reflectivity of the reflector, the thermal conductivity of the receiver body, transmissivity of the quartz window, etc.) on the thermal performance are investigated. Discrete Transfer Method is used to calculate the radiation heat exchange in the receiver. A heat transfer model is developed and the rate of radiation, convection and conduction heat transfer are calculated. Using the numerical model, the heat transfer characteristics of volumetric air receiver for dish-type solar thermal systems are known and the thermal performance of the receiver can be estimated.

  • PDF

Predicting BVI Loadings and Wake Structure of the HARTII Rotor Using Adaptive Unstructured Meshes

  • Yu, Dong-Ok;Jung, Mun-Seung;Kwon, Oh-Joon;Yu, Yung-H.
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제10권2호
    • /
    • pp.95-105
    • /
    • 2009
  • The flow fields around the HARTII rotor were numerically investigated using a viscous flow solver on adaptive unstructured meshes. An overset mesh and a deforming mesh technique were used to handle the blade motion including blade deflection, which was obtain from the HARTII experimental data. A solution-adaptive mesh refinement technique was also used to capture the rotor wake effectively. Comparison of the sectional normal force and pitching moment at 87% radial station between the two cases, with and without the blade deflection, showed that the blade loading is significantly affected by blade torsion. It was found that as the mesh was refined, the strength of tip vortex is better preserved, and the magnitude of high frequency blade loading, caused by blade-vortex interaction (BVI), is further magnified. It was also found that a proper time step size, which corresponds to the cell size, should be used to predict unsteady solutions accurately. In general, the numerical results in terms of the unsteady blade loading and the rotor wake show good agreement with the experimental data.

터빈 노즐의 Fillet 설치에 따른 가스터빈 엔진의 성능 특성에 관한 연구 (A Study on the Effect of Turbine Nozzle with Fillet on Performance Characteristics of a Gas Turbine Engine)

  • 김재민;진상욱;김귀순;최정열;김춘택
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2009년도 제33회 추계학술대회논문집
    • /
    • pp.542-545
    • /
    • 2009
  • 터빈 형상에 따른 가스터빈 엔진의 성능을 전산유체역학을 기반으로 하여 개발된 프로그램을 통하여 예측하여 보았다. 압축기, 연소기, 터빈의 상호작용을 고려하여 엔진의 성능을 예측하였다. 압축기와 터빈의 해석은 각각 2차원과 3차원의 Navier-Stokes 방정식을 사용하였다. 연소기에서는 화학평형방정식을 적용하여 온도변화를 계산하였다. 계산은 터빈 노즐의 fillet 설치의 유무에 따라 두 가지 형상을 적용하여 비교하였다.

  • PDF

와류 안정화를 위한 후향계단 유동 능동제어기법 (Active Flow Control Technology for Vortex Stabilization on Backward-Facing Step)

  • 이진익
    • 전자공학회논문지
    • /
    • 제50권1호
    • /
    • pp.246-253
    • /
    • 2013
  • 본 논문에서는 유동의 안정된 흐름 제어를 위한 유동제어에 대해 다룬다. 전산유체역학 해석을 통해 제공된 대용량의 유동 데이터를 POD 방법을 통하여 축약하고, 제어측면에서 시간 및 주파수 영역에서의 분석에 근거하여 적절한 수준의 저차 모델링한다. 한편, 유동장 표면에 부착된 압력센서로부터 공간상의 유동상태 추정을 위해 신경망 구조를 갖는 유동추정기를 구성하고, 되먹임 유동제어기를 설계함으로써 유동제어루프를 구성한다.

선회 형태 혼합날개가 장착된 연료집합체 내부유동 분포 수치해석 (Numerical Analysis for Flow Distribution inside a Fuel Assembly with Swirl-type Mixing Vanes)

  • 이공희;신안동;정애주
    • 설비공학논문집
    • /
    • 제28권5호
    • /
    • pp.186-194
    • /
    • 2016
  • As a turbulence-enhancing device, a mixing vane installed at a spacer grid of the fuel assembly plays a role in improving the convective heat transfer by generating either swirl flow in the subchannels or cross flow between fuel rod gaps. Therefore, both configuration and arrangement pattern of a mixing vane are important factors that determine the performance of a mixing vane. In this study, in order to examine the flow distribution features inside $5{\times}5$ fuel assembly with swirl-type mixing vanes used in benchmark calculation of OECD/NEA, simulations were conducted with commercial CFD software ANSYS CFX R.14. Predicted results were compared to data measured from MATiS-H (Measurement and Analysis of Turbulent Mixing in Subchannels-Horizontal) test facility. In addition, the effect of swirl-type mixing vanes on flow pattern inside the fuel assembly was described.

FPSO 갑판 침입수 현상에 대한 선수부 형상 영향의 실험적 고찰 (Experimental Investigation of the Bow Configuration Influence on the Green Water on FPSO)

  • 이현호;임호정;이신형
    • 한국해양공학회지
    • /
    • 제23권5호
    • /
    • pp.9-14
    • /
    • 2009
  • The green water on deck has many harmful effects on the vessel in rough seas such as damages to hull structures, damages to cargos, increase of the downtime, decrease of the stability, and so on. Floating Production Storage and Offloading vessels (FPSOs) are operated in a specific location and are normally positioned to meet mostly head or bow waves in order to reduce the roll motions. But this makes FPSOs more vulnerable to green water around the bow region therefore the bow shape should be properly designed to mitigate the green water damage. In this paper, experimental results in regular head waves for three kinds of bow shapes are compared and some design considerations are proposed, with the building a database for computational fluid dynamics (CFD) validation in mind.