• Title/Summary/Keyword: CFD(Computation fluid dynamics)

Search Result 80, Processing Time 0.022 seconds

Transonic Aeroelastic Analysis of Business Jet Aircraft Wing Model (비즈니스 제트 항공기 날개의 천음속 공탄성 해석)

  • Kim, Yo-Han;Kim, Dong-Hyun;Tran, Thanh-Toan
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.04a
    • /
    • pp.299-299
    • /
    • 2011
  • In this study, transonic aeroelastic response analyses have been conducted for the business jet aircraft configuration considering shockwave and flow separation effects. The developed fluid-structure coupled analysis system is applied for aeroelastic computations combining computational structural dynamics(CSD), finite element method(FEM) and computational fluid dynamics(CFD) in the time domain. It can give very accurate and useful engineering data on the structural dynamic design of advanced flight vehicles. For the nonlinear unsteady aerodynamics in high transonic flow region, Navier-Stokes equations using the structured grid system have been applied to wing-body configurations. In transonic flight region, the characteristics of static and dynamic aeroelastic responses have been investigated for a typical wing-body configuration model. Also, it is typically shown that the current computation approach can yield realistic and practical results for aircraft design and test engineers.

  • PDF

Aeroelastic Analyses of Space Rocket Configuration Considering Viscosity Effects (유동점성효과를 고려한 우주발사체 형상의 천음속 공탄성해석)

  • Kim, Yo-Han;Kim, Dong-Hyun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.10a
    • /
    • pp.64-71
    • /
    • 2011
  • In this study, steady and unsteady aerodynamic analyses of a huge rocket configuration have been conducted in a transonic flow region. The launch vehicle structural response are coupled with the transonic flow state transitions at the nose of the payload fairing. The developed fluid-structure coupled analysis system is applied for aeroelastic computations combining computational structural dynamics(CSD), finite element method(FEM) and computational fluid dynamics(CFD) in the time domain. It can give very accurate and useful engineering data on the structural dynamic design of advanced flight vehicles. For the nonlinear unsteady aerodynamics in high transonic flow region, Navier-Stokes equations using the structured grid system have been applied to the rocket configurations. Also, it is typically shown that the current computation approach can yield realistic and practical results for rocket design and test engineers.

  • PDF

Design and analysis of RIF scheme to improve the CFD efficiency of rod-type PWR core

  • Chen, Guangliang;Qian, Hao;Li, Lei;Yu, Yang;Zhang, Zhijian;Tian, Zhaofei;Li, Xiaochang
    • Nuclear Engineering and Technology
    • /
    • v.53 no.10
    • /
    • pp.3171-3181
    • /
    • 2021
  • This research serves to advance the development of engineering computational fluid dynamics (CFD) computing efficiency for the analysis of pressurized water reactor (PWR) core using rod-type fuel assemblies with mixing vanes (one kind of typical PWR core). In this research, a CFD scheme based on the reconstruction of the initial fine flow field (RIF CFD scheme) is proposed and analyzed. The RIF scheme is based on the quantitative regulation of flow velocities in the rod-type PWR core and the principle that the CFD computing efficiency can be improved greatly by a perfect initialization. In this paper, it is discovered that the RIF scheme can significantly improve the computing efficiency of the CFD computation for the rod-type PWR core. Furthermore, the RIF scheme also can reduce the computing resources needed for effective data storage of the large fluid domain in a rod-type PWR core. Moreover, a flow-ranking RIF CFD scheme is also designed based on the ranking of the flow rate, which enhances the utilization of the flow field with a closed flow rate to reconstruct the fine flow field. The flow-ranking RIF CFD scheme also proved to be very effective in improving the CFD efficiency for the rod-type PWR core.

CFD/CSD COUPLED ANALYSIS FOR HART II ROTOR-FUSELAGE MODEL AND FUSELAGE EFFECT ANALYSIS (HART II 로터-동체 모델의 CFD/CSD 연계해석과 동체효과 분석)

  • Sa, J.H.;You, Y.H.;Park, J.S.;Park, S.H.;Jung, S.N.;Yu, Y.H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.343-349
    • /
    • 2011
  • A loosely coupling method is adopted to combine a computational fluid dynamics (CFD) solver and the comprehensive structural dynamics (CSD) code, CAMRAD II, in a systematic manner to correlate the airloads, vortex trajectories, blade motions, and structural loads of the HART I rotor in descending flight condition. A three-dimensional compressible Navier-Stokes solver, KFLOW, using chimera overlapped grids has been used to simulate unsteady flow phenomena over helicopter rotor blades. The number of grids used in the CFD computation is about 24 million for the isolated rotor and about 37.6 million for the rotor-fuselage configuration while keeping the background grid spacing identical as 10% blade chord length. The prediction of blade airloads is compared with the experimental data. The current method predicts reasonably well the BVI phenomena of blade airloads. The vortices generated from the fuselage have an influence on airloads in the 1st and 4th quadrants of rotor disk. It appeared that presence of the pylon cylinder resulted in complex turbulent flow field behind the hub center.

  • PDF

The estimations of planing hull running attitude and resistance by using CFD and Goal Driven Optimization

  • ZHANG, Qi;KIM, Dong-Joon
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.51 no.3
    • /
    • pp.285-294
    • /
    • 2015
  • As a "kind of" mature ship form, planing hull has been widely used in military and civilian areas. Therefore, a reasonable design for planing hull becomes more and more important. For planing hull, resistance and trim are always the most important problems we are concerned with. It affects the planing hull's economic efficiency and maneuverability very seriously. Instead of the expensive towing tank experiments, the development of computer comprehensive ability allows us to previously apply computational fluid dynamics(CFD)to the ship design. In this paper, the CFD method and Goal Driven Optimization (GDO) were used in the estimations of planing hull resistance and running attitude to provide a possible method for performance computation of planing hull.

Research on Engineering & Technology Education for Elementary School Student by using F1 in Schools Program (F1 in Schools 프로그램을 이용한 초등학생 대상 공학 기술 교육에 관한 연구)

  • Park, So-Ra;Nam, Hyun-Wook
    • Journal of Engineering Education Research
    • /
    • v.11 no.1
    • /
    • pp.85-100
    • /
    • 2008
  • The purpose of this study is development of 'F1 in Schools Program' for elementary school student and validation of the program. Fifteen students were originally chosen from the W elementary school in Cheongju, Chungcheogbuk-Do. The children were tested on their understanding of science and 'F1 in Schools Program'. After developing the 'F1 in Schools Program', it was used in the classroom to evaluate applicability and to examine the responses from students, parents and schools. The program consists of 60 classes and the time of each class is 40 minutes. This study was conducted for 10 days from January 22nd, 2007 to February 2nd, 2007. CAD(Computer Aided Design), CFD(Computation Fluid Dynamics), CAM(Computer Aided manufacturing) and CNC Machine were used in this study and proved to be good materials for students in that they increased the students' participation and imagination. However, the children's cognitive and creative abilities as well as manuals written in English hampered the process. Most students, parents, schools seemed to be satisfied with use of the program. However, the schools showed that there was not enough understanding of the program as a whole. The processes with which students build and inspect using the $CO_2$Model Car not only improves the processing of the model but also enhanced the students scientific understanding related to the car speed.

Turbulent Particle Dispersion Effects on Electrostatic Precipitation (전기집진에서의 난류 입자 이산)

  • Choe, Beom-Seok;Fletcher C.A.J
    • 연구논문집
    • /
    • s.28
    • /
    • pp.39-47
    • /
    • 1998
  • Industrial electrostatic precipitation is a very complex process, which involves multiple-way interaction between the electric field, the fluid flow, and the particulate motion. This paper describes a strongly coupled calculation procedure for the rigorous computation of particle dynamics during electrostatic precipitation. The turbulent gas flow and the particle motion under electrostatic forces are calculated by using the commercial computational fluid dynamics (CFD) package FLUENT linked to a finite-volume solver for the electric field and ion charge. Particle charge is determined from both local electrical conditions and the cell residence time which the particle has experienced through its path. Particle charge density and the particle velocity are averaged in a control volume to use Lagrangian information of the particle motion in calculating the gas and electric fields. The turbulent particulate transport and the effects of particulate space charge on the electrical current flow are investigated. The calculated results for poly-dispersed particles are compared with those for mono-dispersed particles, and significant differences are demonstrated.

  • PDF

AERODYNAMIC ANALYSIS AND EXPERIMENTAL TEST FOR 4-BLADED VERTICAL AXIS WIND-TURBINE USING LARGE-EDDY SIMULATION (LES) TURBULENCE MODEL (LES 난류모델을 이용한 4엽형 수직축 풍력발전기 공력해석 및 실험)

  • Ryu, G.J.;Kim, D.H.;Choo, H.H.;Shim, J.P.
    • Journal of computational fluids engineering
    • /
    • v.17 no.3
    • /
    • pp.11-17
    • /
    • 2012
  • In this study, aerodynamic analyses have been conducted for 4-Bladed Vertical-Axis Wind Turbine (VAWT) configuration and the results are compared with experimental data. Reynolds-averaged Navier-Stokes equation with LES turbulence model is solved for unsteady flow problems. In addition, the computation results by standard k-${\omega}$ and SST k-${\omega}$ turbulence models are also presented and compared. An experiment model of 4-Bladed VAWT model has been designed and constructed herein. Experimental tests for aerodynamic performance of the present VAWT model are practically conducted using the vehicle mounted testing system. Comparison results between the experiment and the computational fluid dynamics (CFD) analyses are presented in order to show the accuracy of CFD analyses using the different turbulent models.

Fully Unstructured Mesh based Computation of Viscous Flow around Marine Propellers (비정렬격자를 이용한 프로펠러 성능 및 주위 유동해석)

  • Kim, Min-Geon;Ahn, Hyung Taek;Lee, Jin-Tae;Lee, Hong-Gi
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.51 no.2
    • /
    • pp.162-170
    • /
    • 2014
  • A CFD(Computational Fluid Dynamics) analysis is presented to predict hydrodynamic characteristics of a marine propeller. A commercial RANS(Reynolds Averaged Navier-Stokes equation) solver, namely FLUENT, is utilized in conjunction with fully unstructured meshes around rotating propeller. Mesh generation process is greatly accelerated by using fully unstructured meshes composed of both isotropic and anisotropic tetrahedral elements. The anisotropic tetrahedral elements were used in the flow domain near the blade and shaft, where the viscous effect is important, having complex shape yet resolving the thin boundary layers. For other regions, isotropic tetrahedral elements are utilized. Two different approaches simulating rotational effect of the propeller are employed, namely Moving reference frame technique for steady simulation, and Sliding mesh technique for unsteady simulation. Both approaches are applied to the propeller open water (POW) test simulation. The current results, which are thrust and torque coefficients, are compared with available experimental data.

EFFECT OF TURBULENCE AT INLET BOUNDARY ON AIR MOVEMENT IN A ROOM

  • Lee, Heekwan;Hazim B. Awbi
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2000.04a
    • /
    • pp.162-164
    • /
    • 2000
  • The numerical simulation of air movement in a room using CFD (Computational Fluid Dynamics) requires a complicated set of input data, This includes physical data, such as space geometry, characteristics of supply air flow and contaminant source, etc. as well as computational domain. Among the input data, the boundary conditions related to the inlet are particularly crucial in order to achieve accurate computation results, although there are many other parameters which may also affect the results. (omitted)

  • PDF