• Title/Summary/Keyword: CF4/O2

Search Result 273, Processing Time 0.03 seconds

Recovery of $SF_6$ gas from Gaseous Mixture ($SF_6/N_2/O_2/CF_4$) through Polymeric Membranes (고분자 분리막을 이용한 혼합가스($SF_6/N_2/O_2/CF_4$)로부터 $SF_6$의 회수)

  • Lee, Hyun-Jung;Lee, Min-Woo;Lee, Hyun-Kyung;Choi, Ho-Sang;Lee, Sang-Hyup
    • Membrane Journal
    • /
    • v.21 no.1
    • /
    • pp.22-29
    • /
    • 2011
  • During the maintenance, repair and replacement process of circuit breaker, $SF_6$ reacted with input air in arc discharge, which led to the production of by-product gases (eg, $N_2$, $O_2$, $CF_4$, $SO_2$, $H_2O$, HF, $SOF_2$, $CuF_2$, $WO_3$). Among these various by-product gases, $N_2$, $O_2$, $CF_4$ is major component. Therefore, the effective separation process is necessary to recycle the $SF_6$ gas from the mixture gas containing $N_2$, $O_2$, $CF_4$. In this study, the membrane separation process was applied to recycle the $SF_6$ gas from the mixture gas containing $N_2$, $O_2$, $CF_4$. The concentration of $SF_6$ gas in gas produced from the electric power industry is over than 90 vol%. Therefore, we made the simulated gas containing $N_2$, $O_2$, $CF_4$, $SF_6$ which the concentration of $SF_6$ gas is minimum 90 vol%. From the results of membrane separation process of $SF_6$ gas from $N_2$, $O_2$, $CF_4$ $SF_6$ mixture gases, PSF membrane shown the highest recovery efficiency 92.7%, in $25^{\circ}C$ and 150 cc/min of retentate flow rate. On the other hand, PC membrane shown the highest recovery efficiency 74.8%, in $45^{\circ}C$ and 150 cc/min of retentate flow rate. Also, the highest rejection rate of $N_2$, $O_2$, $CF_4$ is 80, 74 and 58.9% seperately in the same operation condition of highest recovery efficiency. From the results, we supposed the membrane separation process as the effective $SF_6$ separation and recycle process from the mixture gas containing $N_2$, $O_2$, $CF_4$, $SF_6$.

Decomposition Characteristics of CF4 by SiC/Al2O3 Modified with Cerium Sulfate Using Microwave System (마이크로파를 이용한 황산세륨으로 개질화 된 SiC/Al2O3 촉매의 CF4 분해 특성)

  • Choi, Sung-Woo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.37 no.12
    • /
    • pp.668-673
    • /
    • 2015
  • Alumina-based catalysts with different Ce loadings were studied in the decomposition of $CF_4$ using microwave heating system. Heating material of microwave system used Silicon Carbide. The crystallographic phases of catalysts were investigated by XRD and decomposition rates of $CF_4$ were examined by GC-TCD. The catalysts of 10 wt% Ce modified $Al_2O_3$ showed higher $CF_4$ decomposition rate than un-modified $Al_2O_3$ for $500^{\circ}C$ reaction temperature. The k value of catalysts shows the order of $Ce(20)/Al_2O_3=Ce(0)/Al_2O_3<Ce(5)/Al_2O_3<Ce(10)/Al_2O_3$. XRD patterns of $Ce(0)/Al_2O_3$ were no difference before and after the reaction and showed $Al_2O_3$ phases. With the increase in Ce loadings, $CeO_2$, $AlF_3$ of XRD peaks was observed. The results was indicated that Ce modifed $Al_2O_3$ than un-modifed $Al_2O_3$ was decreased reaction temperature to $200^{\circ}C$ with same decomposition rate. Also the appropriated cerium sulfate loadings on $Al_2O_3$ were 5~10 wt%.

Effects of Oxygen Enrichment on the Structure of Premixed Methane/Fluorinated Compound Flames (메탄-불소계 화합물의 예혼합화염 구조에서 산소 부화의 효과)

  • Lee, Ki-Yong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.8
    • /
    • pp.839-845
    • /
    • 2011
  • We performed numerical simulations of freely propagating premixed flames at atmospheric pressure to investigate the influence of trifluoromethane on $CH_4/O_2/N_2$ flames under oxygen enrichment. Trifluoromethane significantly contributed toward a reduction in flame speed, the magnitude of which was larger in terms of the physical effect than the chemical effect. More trifluoromethane could be added and consumed on oxygen-enriched $CH_4/O_2/N_2$ flames. $CHF_3$ was decomposed primarily via $CF_3{\rightarrow}CF_2{\rightarrow}CF{\rightarrow}CF:O{\rightarrow}CO$ and $CHF_3+M{\rightarrow}CF_2+HF+M$ played an important role in oxygen-enhanced flames. When an inhibitor was added to oxygen-enriched flames, the position of the maximum concentration of active radicals was shifted to a relatively low temperature range, and the net rate of OH became higher than that of H.

Study on the Etching Profile and Etch Rate of $SiO_2/Si_3N_4$ by Ar Gas Addition to $CF_4/O_2$ Plasma ($CF_4/O_2$ Plasma에 Ar첨가에 따른 $SiO_2/Si_3N_4$ 에칭 특성 변화)

  • Kim, Boom-Soo;Kang, Tae-Yoon;Hong, Sang-Jeen
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.127-128
    • /
    • 2009
  • CCP방식의 식각에 있어서 CF4/O2 Plasma Etch에 Ar을 첨가함으로써 Etch특성이 어떻게 변화하는지를 조사하였다. FE-SEM를 이용하여 Etch Profile를 측정하였다. 또한 Elipsometer와 Nanospec을 이용하여 Etch rate를 측정하였다. Ar의 비율이 전체의 47%정도를 차지하였을 때까지 Etch Profile이 향상되었다가 그이후로는 다시 감소하는 것을 볼 수 있었다. Ar을 첨가할수록 etch rate은 계속 향상되었다. Ar을 첨가하는 것은 물리적인 식각으로 반응하여 Etch rate의 향상과 적정량의 Ar을 첨가했을 때 Etch profile이 향상되는 결과를 얻었다.

  • PDF

Effect of CF4 Addition on Ferroelectric YMnO3Thin Film Etching (강유전체 YMnO3 박막 식각에 대한 CF4첨가효과)

  • 박재화;김경태;김창일;장의구;이철인
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.4
    • /
    • pp.314-318
    • /
    • 2002
  • The etching behaviors of the ferroelectric $YMnO_3$ thin films were studied by an inductively coupled plasma (ICP). The maximum etch rate of $YMnO_3$ thin film is 300 ${\AA}/min$ at Ar/$Cl_2$of 2/8, RF power of 800W, dc bias voltage of 200V, chamber pressure of 15mTorr and substrate temperature of $30^{\circ}C$. Addition of $CF_4$ gas decrease the etch rate of $YMnO_3$ thin film. From the results of XPS analysis, nonvolatile $YF_x$ compounds were found on the surface of $YMnO_3$ thin film which is etched in Ar/$Cl_2$/CF$_4$plasma. The etch profile of YMnO$_3$film is improved by addition of $CF_4$ gas into the Ar/$Cl_2$ plasma. These results suggest that YF$_{x}$ compound acts as a sidewall passivants which reduce the sticking coefficient of chlorine on $YMnO_3$.

Etching Mechanism of $YMnO_3$ Thin Films in High Density $CF_4$/Ar Plasma ($CF_4$/Ar 가스 플라즈마를 이용한 $YMnO_3$ 박막의 식각 반응연구)

  • 김동표;김창일;이철인
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.12
    • /
    • pp.959-964
    • /
    • 2001
  • We investigated the etching characteristics of YMnO$_3$ thin films in high-density plasma etching system. In this study, YMnO$_3$ thin films were etched with CF$_4$/Ar gas chemistries in inductively coupled plasma(ICP). Etch rates of YMnO$_3$ increased up to 20% CF$_4$ in CF$_4$/(CF$_4$+Ar), but decreased with furthermore increasing CF$_4$ in CF$_4$/(CF$_4$+Ar). In optical emission spectroscopy (OES) analysis, F radical and Ar* ions in plasma at various gas chemistries decreased with increasing CF$_4$ content. Chemical states of YMnO$_3$ films exposed in plasma were investigated with x-ray photoelectron spectroscopy (XPS) and secondary ion mass spectrometry (SIMS). There is a chemical reaction between metal (Y, Mn) and F and metal-fluorides were removed effectively by Ar ion sputtering. YF$_{x}$, MnF$_{x}$ such as YF, YF$_2$, YF$_3$ and MnF$_3$ were detected using SIMS analysis. The etch slope is about 65$^{\circ}$ and cleasn surface. surface of the etched YMnO$_3$ thin films was investigated with X-ray photoelectron spectroscopy (XPS) and secondary ion mass spectrometry (SIMS). The etch profile was also investigated by scanning electron microscopy (SEM).EM).

  • PDF

A study on etch Characteristics of $CeO_2$ thin Film in an $Ar/CF_{4}/Cl_{2}$ Plasma ($Ar/CF_{4}/Cl_{2}$ 플라즈마에 의한 $CeO_2$ 박막의 식각 특성 연구)

  • Chang, Yun-Seong;Chang, Eui-Goo;Kim, Chang-Il;Lee, Cheol-In;Kim, Tae-Hyung;Eom, Joon-Chul
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11b
    • /
    • pp.217-220
    • /
    • 2001
  • The possibility of cerium dioxide $(CeO_2)$ thin films as insulators of metal erroelectric insulator semiconductor (MFIS) structures have been studied. The etching $CeO_2$ thin films have been perfonned in an inductively coupled $Cl_{2}/CF_{4}/Ar$ plasma. The high etch rate of the $CeO_2$ thin film was $250\AA /m$ at a 10 % addition of $Cl_2$ into the $Ar(80)/CF_{4}(20)$. The surface reaction of the etched $CeO_2$ thin films was investigated using X-ray photoelectron spectroscopy (XPS) analysis. There are Ce-Cl and Ce-F bonding by chemical reaction between Cl, F and Ce. These products can be removed by the physical bombardment of incident Ar ions.

  • PDF

Etching Mechanism Of Bi4-xEuxTiO12 (BET) Thin films Using Ar/CF4 Inductively Coupled Plasma (Ar/CF4 유도결합 플라즈마를 이용한 BET 박막의 식각 메카니즘)

  • 임규태;김경태;김동표;김창일
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.4
    • /
    • pp.298-303
    • /
    • 2003
  • Bi$_4$-$_{x}$EU$_{x}$Ti$_3$O$_{12}$ (BET) thin films were etched by inductively coupled CF$_4$/Ar plasma. We obtained the maximum etch rate of 78 nm/min at the gas mixing ratio of CF$_4$(10%)/Ar(90%). The variation of volume density for F and Ar atoms are measured by the optical emission spectroscopy. As CF$_4$increased in CF$_4$/Ar plasma, the emission intensities of F increase, but Ar atoms decrease, which confirms our suggestion that emission intensity is proportional to the volume density of atoms. From X-ray photoelectron spectroscopy, the intensities of the Bi-O, the Eu-O and the Ti-O peaks are changed. By pure Ar plasma, intensity peak of the oxygen-metal (O-M : TiO$_2$, Bi$_2$O$_3$, Eu$_2$O$_3$) bond was seemed to disappear while the intensity of pure oxygen peak showed an opposite tendency. After the BET thin films was etched by CF$_4$/Ar plasma, the peak intensity of O-M bond increase slowly, but more quickly than that of peak belonged to pure oxygen atoms due to the decrease of Ar ion bombardment. Scanning electron microscopy was used to investigate etching Profile. The Profile of etched BET thin film was over 85$^{\circ}$./TEX>.

Etching Mechanism of $YMnO_3$ Thin Films in High Density $CF_{4}/Ar$ Plasma (고밀도 $CF_{4}/Ar$ 플라즈마에서 $YMnO_3$ 박막의 식각 매카니즘)

  • Lee, Cheol-ln;Kim, Dong-Pyo;Kim, Chang-Il
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.05b
    • /
    • pp.12-16
    • /
    • 2001
  • We investigated the etching characteristics of $YMnO_3$ thin films in high-density plasma etching system. In this study. $YMnO_3$ thin films were etched with $CF_{4}/Ar$ gas chemistries in inductively coupled plasma (ICP). Etch rates of $YMnO_3$ were measured according to gas mixing ratios. The maximum etch rate of $YMnO_3$ is 18 nm/min at $CF_{4}/(CF_{4}+Ar)$ of 20%. In optical emission spectroscopy (OES) analysis, F radical and Ar* ions in plasma at various gas chemistries decreased with increasing $CF_4$ content. Chemical states of $YMnO_3$ films exposed in plasma were investigated with x-ray photoelectron spectroscopy (XPS) and secondary ion mass spectrometry (SIMS). There is a chemical reaction between metal (Y, Mn) and F and metal-fluorides were removed effectively by Ar ion sputtering. $YF_x$, $MnF_x$ such as YF, $YF_2$, $YF_3$ and $MnF_3$ Were detected using SIMS analysis. The etch slope is about $65^{\circ}C$ and free of residues.

  • PDF

The Use of Inductively Coupled CF4/Ar Plasma to Improve the Etch Rate of ZrO2 Thin Films

  • Kim, Han-Soo;Woo, Jong-Chang;Joo, Young-Hee;Kim, Chang-Il
    • Transactions on Electrical and Electronic Materials
    • /
    • v.14 no.1
    • /
    • pp.12-15
    • /
    • 2013
  • In this study, we carried out an investigation of the etching characteristics (etch rate, and selectivity to $SiO_2$) of $ZrO_2$ thin films in a $CF_4$/Ar inductively coupled plasma (ICP) system. The maximum etch rate of 60.8 nm/min for $ZrO_2$ thin films was obtained at a 20 % $CF_4/(CF_4+Ar)$ gas mixing ratio. At the same time, the etch rate was measured as a function of the etching parameter, namely ICP chamber pressure. X-ray photoelectron spectroscopy (XPS) analysis showed efficient destruction of the oxide bonds by the ion bombardment, as well as an accumulation of low volatile reaction products on the etched surface. Based on these data, the ion-assisted chemical reaction was proposed as the main etch characteristics for the $CF_4$-containing plasmas.