• Title/Summary/Keyword: CERES-barley

Search Result 6, Processing Time 0.028 seconds

A Study on Grain Yield Response and Limitations of CERES-Barley Model According to Soil Types

  • Sang, Wan-Gyu;Kim, Jun-Hwan;Shin, Pyeong;Cho, Hyeoun-Suk;Seo, Myung-Chul;Lee, Geon-Hwi
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.50 no.6
    • /
    • pp.509-519
    • /
    • 2017
  • Crop simulation models are valuable tools for estimating crop yield, environmental factors and management practices. The objective of this study was to evaluate the effect of soil types on barley productivity using CERES (Crop Environment REsource Synthesis)-barley, cropping system model. So the behavior of the model under various soil types and climatic conditions was evaluated. The results of the sensitivity analysis in temperature, $CO_2$, and precipitation showed that soil types had a direct impact on the simulated yield of CERES-barley model. We found that barley yield in clay soils would be more sensitive to precipitation and $CO_2$ in comparison with temperature. And the model showed limited accuracy in simulating water and nitrogen stress index for soil types. In general, the barley grown on clay soils were less sensitive to water stress than those grown on sandy soils. Especially it was found that the CERES model underestimated the effect of water stress in high precipitation which led to overprediction of crop yield in clay soils. In order to solve these problems and successfully forecast grain yield, further studies on the modification of the water stress response of crops should be considered prior to use of the CERES-barley model for yield forecasting.

Grain Yield Response of CERES-Barley Adjusted for Domestic Cultivars to the Simultaneous Changes in Temperature, Precipitation, and CO2 Concentration (기온, 강수량, 이산화탄소농도 변화에 따른 CERES-Barley 국내품종의 종실수량 반응)

  • Kim, Dae-Jun;Roh, Jae-Hwan;Yun, Jin I.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.15 no.4
    • /
    • pp.312-319
    • /
    • 2013
  • Our understanding of the sensitivities of crop responses to changes in carbon dioxide, temperature, and water is limited, which makes it difficult to fully utilize crop models in assessing the impact of climate change on future agricultural production. Genetic coefficients of CERES-Barley model for major domestic cultivars in South Korea (Olbori at Suwon, Albori at Milyang, Saessalbori at Iksan, and Samdobori at Jinju) were estimated from the observed data for daily weather and field trials for more than 10 years by using GenCalc in DSSAT. Data from 1997-2002 annual crop status report (Rural Development Administration, RDA) were used to validate the crop coefficients. The sitecalibrated CERES-Barley model was used to perform crop growth simulation with the 99 treatments of step change combinations in temperature, precipitation and carbon dioxide concentration with respect to the baseline climate (1981-2010) at four sites. The upper boundary corresponds to the 2071-2100 climate outlook from the RCP 8.5 scenario. The response surface of grain yield showed a distinct pattern of model behavior under the combined change in environmental variables. The simulated grain yield was most sensitive to $CO_2$ concentration, least sensitive to precipitation, and showing a variable response to temperature depending on cultivar. The emulated impacts of response surfaces are expected to facilitate assessment of projected climate impacts on a given cultivar in South Korea.

Simulation of the Effects of the A1B Climate Change Scenario on the Potential Yield of Winter Naked Barley in Korea (A1B 기후변화 시나리오가 국내 가을 쌀보리의 잠재수량에 미치는 영향 모사)

  • Shim, Kyo-Moon;Min, Sung-Hyun;Lee, Deog-Bae;Kim, Gun-Yeob;Jeong, Hyun-Cheol;Lee, Seul-Bi;Kang, Ki-Keong
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.13 no.4
    • /
    • pp.192-203
    • /
    • 2011
  • The CERES-Barley crop simulation model was used to assess the impacts of climate change on the potential yield of winter naked barley in Korea. Fifty six sites over the southern part of the Korean Peninsula were selected to compare the climate change impacts in various climatic conditions. Based on the A1B climate change scenarios of Korea, the present climatological normal (1971-2000) and the three future ones (2011-2040, 2041-2070, and 2071-2100) were considered in this study. The three future normals were divided by three environmental conditions with changes in: (1) temperature only, (2) carbon dioxide concentration only, and (3) both temperature and carbon dioxide concentration. The agreement between the observed and simulated outcomes was reasonable with the coefficient of determination of grain yield to be 0.78. We concluded that the CERES-Barley model was suitable for predicting climate change impacts on the potential yield of winter naked barley. The effect of the increased temperature only with the climate change scenario was negative to the potential yield of winter naked barley, which ranges from -34 to -9% for the three future normals. However, the effect of the elevated carbon dioxide concentration only on the potential yield of winter naked barley was positive, ranging from 6 to 31% for the three future normals. For the elevated conditions of both temperature and carbon dioxide concentration, the potential yields increased by 8, 15, and 13% for the 2011-2040, 2041-2070, and 2071-2100 normals, respectively.

Assessing Impacts of Temperature and Carbon Dioxide Based on A1B Climate Change Scenario on Potential Yield of Winter Covered Barley in Korea (A1B 기후변화시나리오에 따른 미래 겉보리 잠재생산성 변화 예측)

  • Shim, Kyo Moon;Lee, Deog Bae;Min, Seong Hyeon;Kim, Gun Yeob;Jeong, Hyun Cheol;Lee, Seul Bi;Kang, Ki Keong
    • Journal of Climate Change Research
    • /
    • v.2 no.4
    • /
    • pp.317-331
    • /
    • 2011
  • The CERES-Barley crop simulation model of DSSAT package was used to assess the impacts of climate change on potential yield of winter covered barley in Korea. 56 sites over the southern part of Korean peninsula were selected to compare the climate change impacts in various climatic conditions. The climatological normals (1971~2000) and the three future climatological normals (2011~2040, 2041~2070, and 2071~2100), based on A1B climate change scenarios of Korea, were used in this study, and the three future climatological normals were simulated under three environmental conditions, where only temperature change, only carbon dioxide change, and both of temperature and carbon dioxide change with future A1B climate change scenarios, respectively. Results: The CERES-Barley model was suitable for predicting climate change impacts on the potential yield of winter covered barley, because of the agreement between observed and simulated outcomes (e.g., the coefficient of determination of grain yield equals 0.84). (1) The only increased temperature effect with the climate change scenarios was mostly negative to the potential yield of winter covered barley and its magnitude ranges from -21% to +1% for the three future normals. (2) The effect of the only elevated carbon dioxide on the potential yield of winter covered barley was positive and its magnitude ranged from 12% to 43% for the three future normals. (3) For increased temperature and elevated carbon dioxide change cases, potential yields increased by 13%, 21%, 19% increase for the 2011~2040, 2041~2070, 2071~2100 normals, respectively.

An Outlook on Cereal Grains Production in South Korea Based on Crop Growth Simulation under the RCP8.5 Climate Change Scenarios (RCP8.5 기후조건의 작물생육모의에 근거한 우리나라 곡물생산 전망)

  • Kim, Dae-Jun;Kim, Soo-Ock;Moon, Kyung-Hwan;Yun, Jin-I.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.14 no.3
    • /
    • pp.132-141
    • /
    • 2012
  • Climate change impact assessment of cereal crop production in South Korea was performed using land attributes and daily weather data at a farm scale as inputs to crop models. Farmlands in South Korea were grouped into 68 crop-simulation zone units (CZU) based on major mountains and rivers as well as existing land use information. Daily weather data at a 1-km grid spacing under the A1B- and RCP8.5 scenarios were generated stochastically to obtain decadal mean of daily data. These data were registered to the farmland grid cells and spatially averaged to represent climate conditions in each CZU. Monthly climate data for each decade in 2001~2100 were transformed to 30 sets of daily weather data for each CZU by using a stochastic weather generator. Soil data and crop management information for 68 CZU were used as inputs to the CERES-rice, CERE-barley and CROPGRO-soybean models calibrated to represent the genetic features of major domestic cultivars in South Korea. Results from the models suggested that the heading or flowering of rice, winter barley and soybean could be accelerated in the future. The grain-fill period of winter barley could be extended, resulting in much higher yield of winter barley in most CZUs than that of rice. Among the three major cereal grain crops in Korea, rice seems most vulnerable to negative impact of climate change, while little impact of climate change is expected on soybeans. Because a positive effect of climate change is projected for winter barley, policy in agricultural production should pay more attention to facilitate winter barley production as an adaptation strategy for the national food security.