• Title/Summary/Keyword: CEN and CEB Code

Search Result 2, Processing Time 0.018 seconds

Compressive Behavior of Concrete with Loading and Heating (가열 및 재하에 의한 콘크리트의 압축거동)

  • Kim, Gyu-Yong;Jung, Sang-Hwa;Lee, Tae-Gyu;Kim, Young-Sun;Nam, Jeong-Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.4
    • /
    • pp.119-125
    • /
    • 2010
  • The performance deformation of concrete can be caused by many factors such as load, thermal strain and creep at high temperature. Japan, Europe and America have been doing various experimental studies to solve these problems about thermal properties of concrete at high temperature, each study has generated different results due to a heating methods, heating hours, size of specimens and performance of a the loading, heating method, size of specimen and heating machine. There has been no unified experimental method so far. Therefore, this study reviewed experimental studies on the strength performance of concrete subject to heating and loading method. As a result, compressive strength of specimen prestressed increase in the temperature range of between $100^{\circ}C$ and about $400^{\circ}C$. Also, results can be analyzed as compare equation of compressive strength at elevated temperature with CEN and CEB code.

Strength Properties of High-Strength Concrete Exposed at High Temperature (고온을 받은 고강도 콘크리트의 강도특성)

  • 윤현도;김규용;한병찬
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.5
    • /
    • pp.698-707
    • /
    • 2002
  • A review is presented of experimental studies on the strength performance of concrete exposed at short-term and rapid heating as in a fire and after cooling. Emphasis is placed on concretes with high original compressive strengths, that is, high-strength concrete(HSC). The compressive strength-temperature relationships from the reviewed test programs are distinguished by the test methods used in obtaining the data(unstressed, unstressed residual strength, and stressed tests) and by the aggregate types(normal or lightweight), The compressive strength properties of HSC vary differently with temperature than those of NSC. HSC have higher rates of strength loss than lower strength concrete in the temperature range of between 20$^{\circ}C$ to about 400$^{\circ}C$. These difference become less significant at temperatures above 400$^{\circ}C$ compressive strengths of HSC at 800$^{\circ}C$ decrease to about 30 % of the original room temperature strength. A comparison of lest results with current code provisions on the effects of elevated temperatures on concrete compressive strength and elastic modulus shows that the CEN Eurocodes and the CEB provisions are unconservative.