• 제목/요약/키워드: CEB-FIP model

검색결과 70건 처리시간 0.021초

프리플렉스 부재를 이용한 콘크리트 박스 구조물 내진보강에 관한 실험 및 해석적 평가 (Experimental and Analytical Evaluation of the Seismic performance of a Concrete Box Structure Strengthened with Pre-flexed Members)

  • 안호준;송상근;민대홍;안상미;공정식
    • 한국전산구조공학회논문집
    • /
    • 제29권5호
    • /
    • pp.397-403
    • /
    • 2016
  • 1970년대 이후 한국의 빠른 경제성장 동안에 수로나 철도 등 많은 지중구조물들이 건설되었다. 1988년에 내진설계가 의무화되었으나, 1988년 이전의 지중 구조물들은 내진설계가 반영되지 않았다. 따라서, 이러한 지중 구조물들은 지진이 일어났을 때 안전성을 확보하기 위해 효과적인 내진 보강방법이 필요하다. 그러한 이유로, 본 연구에서는 새롭게 개발된 보강재를 이용한 RC 박스 지중 구조물 우각부 보강공법의 내진성능에 대하여 분석하였다. 이 공법은 박스구조물 우각부에 Pre-flexed member를 설치하여 외력에 저항력을 증대시키는 원리이다. 타당성을 검증하기 위해서 새로이 개발된 보강재와 기존의 보강재를 실험과 유한요소해석으로 비교하였다. 유한요소모델에서 강재의 비선형 모델은 J2 Plasticity Model을 기초로 하고 콘크리트는 CEB-FIP MODEL CODE 1990로 모델링되었다. 또한, 설계반영을 위한 박스 구조물과 보강재와의 합성률을 산정하였다. 보강재와 박스구조물은 Tie에 의해 완전 부착된 상태의 연결조건 하에서 해석이 수행되었으며, 하중-변위곡선에서 실험과 유한요소해석의 결과가 서로 일치하였다.

철근 콘크리트부재에서 최소균열간격을 이용한 최대균열폭 산정 (Estimation of Maximum Crack Width Using Minimum Crack Spacing in Reinforced Concrete)

  • 고원준;양동석;장원석;박선규
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2001년도 봄 학술발표회 논문집
    • /
    • pp.903-908
    • /
    • 2001
  • This paper deals with the estimation of the maximum flexural crack widths using minimum crack spacing for reinforced concrete members. The proposed method utilizes the conventional crack and bond-slip theories as well as bonding transfer length and effects of creep and shrinkage between the reinforcement and concrete. An analytical equation for the estimation of the maximum flexural crack width is formulated as a function of mean bond stress. The validity, accuracy and efficiency of the proposed method are established by comparing the analytical results with the experimental data and the major code specifications (e.g., ACI, CEB-FIP Model code, Eurocode 2, etc.). The analytical results of analysis presented in this paper indicate that the proposed method can be effectively estimated the maximum flexural crack width of the reinforced concrete members.

  • PDF

Extradosed PSC Box 교의 시공단계해석 (Construction Stage Analysis of Extradosed PSC Box Bridges)

  • 윤군진;이완수;이종신;김성찬
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2001년도 가을 학술발표회 논문집
    • /
    • pp.347-354
    • /
    • 2001
  • Extradosed PSC Box bridges, newly emerging type of structures in construction market, have a characteristic in that external tendons are used for strengthening PSC Box girder like stay cables in cable stayed bridges. In this study, a series of constructions stage analysis procedure, including initial shape analysis, backward analysis and forward analysis, have been performed in order to investigate long-term behavior of extradosed PSC box bridges, using PCCAP-a computer program for time-dependent stage analysis of PSC cable stayed bridges. CEB-FIP 1978 model was used for the consideration of time-dependent effect of concrete material. Showing the validity of the analysis results with RM SPACE FRAME, it has been confirmd that time-dependent effects become less consequential as the stiffness of girder becomes larger.

  • PDF

부착응력-상대슬립을 이용한 휨균열폭 산정 (ESTIMATION OF CRACK WIDTH USING BOND STRESS-RELATIVE SLIP)

  • 고원준;김진호;서봉원;박선규
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2002년도 봄 학술발표회 논문집
    • /
    • pp.917-922
    • /
    • 2002
  • This paper deals with the estimation of the maximum crack widths considering bond-slip relationships based on experimental data that were tensed by axial force. It is certificated that the concrete stress condition clearly affects the bond-slip relationship. The proposed method utilizes the conventional crack and bond-slip theories as well as the characteristics of deformed reinforcement and size effects. An analytical equation for the estimation of the maximum flexural crack width is formulated as a function of minimum crack length and the coefficient of bond stress effect. The validity, accuracy and efficiency of the proposed method are established by comparing the analytical results with the experimental data and the major specifications (e.g., ACI, CEB-FIP Model code, Turocode 2, JSCE, etc.). The analytical results presented in this paper indicate that the proposed method can be effectively estimated the maximum flexural crack width of reinforced concrete.

  • PDF

PSC 교량의 프리스트레스 손실에 관한 해석적 연구 (Analytical Study on the Prestress Losses of Prestressed Concrete Bridges)

  • 김운학;라정균;김태훈;신현목
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제7권1호
    • /
    • pp.131-138
    • /
    • 2003
  • This paper presents an analytical prediction of the prestress losses of prestressed concrete bridges. In this study a numerical procedure and computer program is developed to analyze the behavior of prestressed concrete bridges considering the time-dependent properties of material. It accounts for the aging, creep and shrinkage of concrete and the stress relaxation of prestressed steel. The structural model uses two dimensional plane frame elements with three nodal degree of freedom and is analyzed based on the finite element method. Member cross section can consist of concrete, reinforcement and prestressing steel. Two different set of equations for the prediction of time-dependent material properties of concrete are presented, which are ACI, CEB-FIP. The proposed numerical method for the prestress losses of prestressed concrete bridges is verified by comparison with reliable experimental results.

토피가 큰 콘크리트 지하구조물의 기둥에 대한 시간의존적 해석 (Time dependent Analysis of RC Column in Subway Structure having high Filled Soil Layer)

  • 정제평;이상희;김생빈;김우
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1998년도 가을 학술발표대회 논문집(III)
    • /
    • pp.603-608
    • /
    • 1998
  • This study was performed to examine the effect of time dependent properties on RC columns in subway structures subjected to high filled soil layer. By using Program TCC which is a modified version of CPF for the present purpose, a typical column in subway structure was analyzed. Four different model equations for predicted time dependent concrete properties(ACI, CEB-FIP, Bazant & Panula and Korea Bridge Specification) was employed, and the results were compared. It was found that a relevant creep coefficient is recommended to be 1.0 for designing columns in subway structure, and the sol filling work would be performed at least 3 months later after the concrete casting in order to ensure durability by reducing the negative effect of concrete time dependent properties.

  • PDF

프리스트레스트 콘크리트 박스거더 교량이 시간의존적 특성에 관한 연구 (A Study on the Time-dependent Characteristics of Prestressed Concrete Box-Girder Bridge)

  • 윤영수;이만섭;최한태
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1998년도 가을 학술발표대회 논문집(III)
    • /
    • pp.674-679
    • /
    • 1998
  • In designing the prestressed concrete box-bridge, the dead load, prestressing force, creep and shrinkage of concrete are the main factors which influence the camber and deflection of segmental concrete structure under construction. Among these factors the creep and shrinkage are the functions of the time-dependent property which, therefore, must be considered with time. The prediction model for estimating creep and shrinkage of concrete has been suggested by ACI, CEB/FIP, JSCE and KSCE design code and EMM, AEMM, RCM, IDM and SSM has been suggested for analytical method in consideration of the time-dependent characteristics. In this study, the creep test was carried out for four curing ages of concrete which were applied to the prestressed concrete structure at a construction site, and the results of test were compared to the values of creep prediction by the design code. Also the creep test of step-wise incremental stresses were performed and were compared to analytical methods.

  • PDF

Local bond stress-slip behavior of reinforcing bars embedded in lightweight aggregate concrete

  • Tang, Chao-Wei
    • Computers and Concrete
    • /
    • 제16권3호
    • /
    • pp.449-466
    • /
    • 2015
  • This paper aims to study the local bond stress-slip behavior of reinforcing bars embedded in lightweight aggregate concrete (LWAC). The experimental variables of the local bond stress-slip tests include concrete strength (20, 40 and 60 MPa), deformed steel bar size (#4, #6 and #8) and coarse aggregate (normal weight aggregate, reservoir sludge lightweight aggregate and waterworks sludge lightweight aggregate). The test results show that the ultimate bond strength increased with the increase of concrete compressive strength. Moreover, the larger the rib height to the diameter ratio ($h/d_b$) of the deformed steel bars is, the greater the ultimate bond stress is. In addition, the suggestion value of the CEB-FIP Model Code to the LWAC specimen's ultimate bond stress is more conservative than that of the normal weight concrete.

CEMHYD-3D로 예측된 수화도를 기초로 한 고성능 콘크리트의 건조수축 모델제안 (Development of Drying Shrinkage Model for HPC Based on Degree of Hydration by CEMHYD-3D Calculation Result)

  • 김재기;서종명;윤영수
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2004년도 추계 학술발표회 제16권2호
    • /
    • pp.501-504
    • /
    • 2004
  • This paper proposes degree of hydration based shrinkage prediction model of 40MPa HPC. This model shows degree of hydration which is defined as the ratio between the hydrated cement mass and the initial mass of cement is very closely related to shrinkage deformation. In this study, degree of hydration was determined by CEMHYD-3D program of NIST. Verification of the predicted degree of hydration is performed by comparison between test results of compressive strength and estimated one by CEMHYD-3D. Proposed model is determined by statistical nonlinear analysis using the program Origin of Origin Lab. Co. To get coefficients of the model, drying shrinkage tests of four specimen series were followed with basic material tests. Testes were performed in constant temperature /humidity chamber, with difference moisture curing ages to know initial curing time effect. Verification with another specimen, collected construction field of FCM bridge, was given in the same condition as pre-tested specimens. Finally, all test results were compared to propose degree of hydration based model and other code models; AASHTO, ACI, CEB-FIP, JSCE, etc.

  • PDF

경량골재 콘크리트 바닥판의 펀칭전단강도의 실험적 평가 (Experimental Evaluation of the Punching Shear Strength with Lightweight Aggregate Concrete Slabs)

  • 김정중;문지호;염광수
    • 콘크리트학회논문집
    • /
    • 제26권3호
    • /
    • pp.361-367
    • /
    • 2014
  • 이 연구에서는 실험연구를 통하여 경량골재콘크리트 바닥판의 펀칭전단강도를 평가하였다. 일반콘크리트와 서로 다른 4 종류의 경량골재를 사용하여 총 5 개의 바닥판 실험체를 제작하였다. 이 연구에서 사용된 4 가지의 경량골재는 서로 원재료(점토, 셰일, 혹은 점판암) 및 형상 (원형 혹은 분쇄형)이 다르며, 이러한 서로 다른 경량 골재들이 바닥판의 펀칭전단강도에 미치는 영향을 실험 결과를 바탕으로 분석하였다. 실험 결과, 원형 경량골재로 만든 바닥판실험체의 펀칭전단파괴면은 일반콘크리트 실험체 및 파쇄된 경량골재 바닥판실험체보다 기울기가 낮았으며, 이로 인해 전단파괴면이 더 넓게 분포하였다. 이로 인해 펀칭 전단강도가 증가될 수 있었다. 반면에 파쇄된 경량골재의 경우 파괴면이 일반 콘크리트와 유사한 것으로 나타났다. 마지막으로 실험 결과를 현재 펀칭전단강도를 예측하는데 널리 쓰이는 국내기준과 ACI318-11 및 CEB-FIP 코드와 비교 분석하여 경량골재콘크리트 바닥판의 펀칭전단강도 예측의 유효성을 검증하였다.