• Title/Summary/Keyword: CDK2 inhibitor

Search Result 99, Processing Time 0.021 seconds

The Effects of Yunpyesan on Cell Proloferation, Apoptosis and Cell Cycle Progression of Human Lung Cancer A549 Cells (윤폐산에 의한 폐암세포 증식억제기전에 관한 연구)

  • Kang Yun-Keong;Park Dong Il;Lee Jun Hyuk;Choi Yung Hyun
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.16 no.4
    • /
    • pp.745-755
    • /
    • 2002
  • To examine the effects of Yunpyesan on the cell proliferation of A549 human lung carcinoma cell line, we performed various experiments such as dose-dependent effect of Yunpyesan on cell proliferation and viability, morphological changes, quantification of apoptotic cell death and alterations of apoptosis/cell cycle-regulatory gene products. Yunpyesan declined cell viability and proliferation in both a dose- and a time-dependent manner. The anti-proliferative effect by Yunpyesan treatment in A459 cells was associated with morphological changes such as membrane shrinking and cell rounding up. Yunpyesan Induced apoptotic cell death in a time-dependent manner, which was associated with degradation of poly-(ADP-ribose) polymerase (PARP), an apoptotic target protein, without alterations of the balance between Bcl-2 and Bax expressions. DNA flow cytometric histograms showed that population of G1 phase of the cell cycle was increased by Yunpyesan treatment in a dose-dependent manner. Western blot analysis revealed that cyclin D1 and A were reduced by Yunpyesan treatment, whereas cyclin dependent kinase (Cdk) inhibitor p27 was markedly increased in a time-dependent fashion. The level of tumor suppressor p53 proteins was also increased by Yunpyesan treatment and its increase might be linked to increase of Cdk inhibitor p27. In addition, Mdm2, negative regulator of p53, was down-regulated by Yunpyesan treatment. Since the expression of retinoblastome protein (pRB), a key regulator of G1/S progression, was reduced by Yunpyesan treatment, we supposed that phosphorylation of pRB might be also blocked. The present results indicated that Yunpyesan-induced inhibition of lung cancer cell proliferation is associated with the induction of apoptosis and the blockage of G1/S progression.

Cell Cycle Arrest by Sabaek-san is Associated with induction of Cdk Inhibitor p21 in Human Lung Cancer A549 Cells (사백산에 의한 인체 폐암세포의 G1기 성장억제기전에 관한 연구)

  • Kang Byong Ryeung;Oh Chang Sun;Lee Jae Hun;Choi Yung Hyun;Park Dong Il
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.16 no.6
    • /
    • pp.1177-1183
    • /
    • 2002
  • We investigated the effects of Sabaek-san (SBS) water extract on the cell proliferation of human lung carcinoma A549 cells. SBS treatment resulted in the inhibition of cell proliferation in a concentration-dependent manner. This anti-proliferative effect of A549 cells by SBS treatment was associated with morphological changes such as membrane shrinking and cell rounding up. DNA flow cytometric histograms showed that population of G1 phase of the cell cycle was increased by SBS treatment in a concentration-dependent manner. SBS treatment induced a marked accumulation of tumor suppressor p53 and a concomitant induction of cyclin-dependent kinase (Cdk) inhibitor p21WAF1/CIP, which appears to be transcriptionally upregulated and is p53 dependent. In addition, SBS treatment resulted in down-regulation of cyclooxygenase-2 (COX-2) as determined by RT-PCR analysis. The present results indicated that SBS-induced inhibition of lung cancer cell proliferation is associated with the blockage of G1/S progression the induction of apoptosis.

Cell Cycle Arrest of Human Lung Carcinoma A549 Cells by an Aqueous Extract from the Roots of Platycodon grandiflorum (길경 수용액 추출물에 의한 인체 폐암세포의 성장억제 기전 연구)

  • Kang Rak Won;Lee Jae Hun;Kam Cheol Woo;Choi Byung Tae;Choi Yung Hyun;Park Dong Il
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.17 no.1
    • /
    • pp.183-189
    • /
    • 2003
  • Platycodi Radix, the root of Platycodon grandiflorum, commonly known as Doraji, is used as a traditional oriental medicine. Extracts from the roots of P. grandiflorum have been reported to have wide ranging health benefits. We investigated the effects of an aqueous extract from the roots of P. grandiflorum (AEPG) on the cell proliferation of human lung carcinoma A549 cells in order to understand its anti-proliferative mechanism. AEPG treatment resulted in the inhibition of cell proliferation in a concentration-dependent manner. This anti-proliferative effect of A549 cells by AEPG treatment was associated with morphological changes such as membrane shrinking, cell rounding up and inhibition of cell migration. DNA flow cytometric histograms showed that populations of both Sand G2/M phase of the cell cycle were increased by AEPG treatment in a concentration-dependent manner. AEPG treatment induced a marked accumulation of tumor suppressor p53 and a concomitant induction of cyclin-dependent kinase (Cdk) inhibitor p21 and p27. In addition, SSS treatment resulted in down-regulation of Cdk2 and Cdk4 expression. The present results indicated that AEPG-induced inhibition of lung cancer cell proliferation is associated with the blockage of S to G2/M phase progression the induction of apoptosis. Taken together, these findings suggest that P. grandiflorum has strong potential for development as an agent for prevention against human lung cancer.

Inhibitory Mechanisms of Cell Cycle Regulation Induced by Indole-3-carbinol in Hepatocellular Carci-noma HepG2 Cells. (간암 세포주에서의 Indole-3-Carbinol에 의해 유도되는 세포주기 억제 기전)

  • 김동우;이광수;김민경;조율희;이철훈
    • Microbiology and Biotechnology Letters
    • /
    • v.29 no.3
    • /
    • pp.181-185
    • /
    • 2001
  • The naturally occurring chemical indole-3-carbinol (13C), found in vegetables of the Brassica genus, is a promising anticancer agent that was shown previ- ously to induce a Gl cell cycle arrest of human breast cancer cell lines, independent of estrogen receptor signaling. The anticancer activity of 13C and the possible mechanisms of its action were explored in a human hepatocellular carcinoma cell line, HepG2. Treatment of HepG2 cells with 13C suppressed the growth of the cells. The growth sup- pression caused by 13C ($IC_{50}$/: 444$\mu$M) was found to be partially due to its ability to stop the cell cycle in HepG2 cells. Western blot analysis for the Gl phase artiest demonstrated that the expression-levels of cyclin-dependent kinase (Cdk4, Cdk6) and cyclic D were reduced strongly after treatment of Hep72 cells with 13C (4007M) for 24- 72 hrs. Furthermore, I3C selectively abolished the expression of Cdk6 in a dose- and time-dependent manner, and accordingly, inhibited the phosphorylation of retinoblastoma. Interestingly, after the HepG2 cells reached their max- imal growth arrest, the level of the p21, a well-known Cdk inhibitor, increased significantly. Therefore, it could be considered that the Gl arrest of HepG2 cells treated with 13C was due to the indirect inhibition of Cdk4/6 activities by p21 Western blot analysis for G2/M phase arrest of demonstrated the levels of Cdc2 and cyclin Bl werer reduced dramatically after the treatment of HepG2 cells with 13C ($40\mu$M) for 24-72 hrs. flow cytometry of propidium iodide-stained HepG2 cells revealed that 13C induces a Gl (53%,72hr incubation) and G2 (25%,24hr incubation) cell cycle arrest. Thus, our observations have uncovered a previously undefined antiproliferative pathway for r3C that implicates Cdk4/6 and Cdc2 as a target for cell cycle control in human HepG2 cells. However, the 13C-medi- ated cell cycle arrest and repression of Cdk4/6 production did not affect the apoptotic induction of HepG2 cell.

  • PDF

Calpain Protease-dependent Post-translational Regulation of Cyclin D3 (Calpain protease에 의한 cyclin D3의 post-translation조절)

  • Hwang, Won Deok;Choi, Yung Hyun
    • Journal of Life Science
    • /
    • v.25 no.1
    • /
    • pp.1-7
    • /
    • 2015
  • Cyclin D is a member of the cyclin protein family, which plays a critical role as a core member of the mammalian cell cycle machinery. D-type cyclins (D1, D2, and D3) bind to and activate the cyclin-dependent kinases 4 and 6, which can then phosphorylate the retinoblastoma tumor suppressor gene products. This phosphorylation in turn leads to release or derepression of E2F transcription factors that promote progression from the G1 to S phase of the cell cycle. Among the D-type cyclins, cyclin D3 encoded by the CCND3 gene is one of the least well studied. In the present study, we have investigated the biochemistry of the proteolytic mechanism that leads to loss of cyclin D3 protein. Treatment of human prostate carcinoma PC-3-M cells with lovastatin and actinomycin D resulted in a loss of cyclin D3 protein that was completely reversible by the peptide aldehyde calpain inhibitor, LLnL. Additionally, using inhibitors for various proteolytic systems, we show that degradation of cyclin D3 protein involves the $Ca^{2+}$-activated neutral protease calpain. Moreover, the half-life of cyclin D3 protein half-life increased by at least 10-fold in PC-3M cells in response to the calpain inhibitor. We have also demonstrated that the transient expression of the calpain inhibitor calpastatin increased cyclin D3 protein in serum-starved NIH 3T3 cells. These data suggested that the function of cyclin D3 is regulated by $Ca^{2+}$-dependent protease calpain.

Anti-Cancer Effect of IN-2001 in T47D Human Breast Cancer

  • Joung, Ki-Eun;Min, Kyung-Nan;Kim, Dae-Kee;Sheen, Yhun-Yhong
    • Biomolecules & Therapeutics
    • /
    • v.20 no.1
    • /
    • pp.81-88
    • /
    • 2012
  • Histone deacetylases (HDACs) are enzymes involved in the remodelling of chromatin, and have a key role in the epigenetic regulation of gene expression. Histone deacetylase (HDAC) inhibitors are emerging as an exciting new class of potential anti-cancer agents. In recent years, a number of structurally diverse HDAC inhibitors have been identifi ed and these HDAC inhibitors induce growth arrest, differentiation and/or apoptosis of cancer cells in vitro and in vivo. However, the underlying molecular mechanisms remain unclear. This study aimed at investigating the anti-tumor activity of various HDAC inhibitors, IN-2001, using T47D human breast cancer cells. Moreover, the possible mechanism by which HDAC inhibitors exhibit anti-tumor activity was also explored. In estrogen receptor positive T47D cells, IN-2001, HDAC inhibitor showed anti-proliferative effects in dose-and time-dependent manner. In T47D human breast cancer cells showed anti-tumor activity of IN-2001 and the growth inhibitory effects of IN-2001 were related to the cell cycle arrest and induction of apoptosis. Flow cytometry studies revealed that IN-2001 showed accumulation of cells at $G_2$/M phase. At the same time, IN-2001 treatment time-dependently increased sub-$G_1$ population, representing apoptotic cells. IN-2001-mediated cell cycle arrest was associated with induction of cdk inhibitor expression. In T47D cells, IN-2001 as well as other HDAC inhibitors treatment significantly increased $p21^{WAF1}$ and $p27^{KIP1}$ expression. In addition, thymidylate synthase, an essential enzyme for DNA replication and repair, was down-regulated by IN-2001 and other HDAC inhibitors in the T47D human breast cancer cells. In summary, IN-2001 with a higher potency than other HDAC inhibitors induced growth inhibition, cell cycle arrest, and eventual apoptosis in human breast cancer possibly through modulation of cell cycle and apoptosis regulatory proteins, such as cdk inhibitors, cyclins, and thymidylate synthase.

Modulacon of Cell Cycle Control by Histone Deacetylase Inhibitor Trichostatin A in A549 Human Non-small Cell Lung Cancer Cells (인체폐암세포 A549의 세포주기 조절인자에 미치는 histone deacetylase inhibitor trichostatin A의 영향)

  • Hwang Ji Won;Kim Young Min;Hong Su Hyun;Choi Byung Tae;Lee Won Ho;Choi Yung Hyun
    • Journal of Life Science
    • /
    • v.15 no.5 s.72
    • /
    • pp.726-733
    • /
    • 2005
  • Histone deacetylase (HDAC) inhibitors target key steps of tumor development. They inhibit proliferation, induce differentiation and/or apoptotic cell death, and exhibit potent antimetastatic and antiangiogenic properties in cancer cells in vitro and in vivo. Although they are emerging as a promising new treatment strategy in malignancy, how they exert their effect on human non-small cell lung cancer cells is as yet unclear. The present study was undertaken to investiate the underlying mechanism of a HDAC inhibitor trichostatin A (TSA)-induced growth arrest and its effect on the cell cycle control gene products in a human lung carcinoma cell line A549. TSA treaoent induced the growth inhibition and morphological changes in a concentration-dependent manner. Treatment of A549 cells with TSA resulted in a concentration-dependent increased G1 (under 100 ng/ml) and/or G2/M (200 ng/ml) cell population of the cell cycle as determined by flow cytometry Moreover, 200 ng/ml TSA treatment significantly induced the population of sub-G1 cells (23.0 fold of control). This anti-proliferative effect of TSA was accompanied by a marked inhibition of cyclins, positive regulators of cell cycle progression, and cyclin-dependent kinases (Cdks) expression and concomitant induction of tumor suppressor p53 and Cdk inhibitors such as p21 and p27 Although further studies are needed, these findings provide important insights into the possible molecular mechanisms of the anti-cancer activity of TSA in human lung carcinoma cells.

Iron-Saturated Lactoferrin Stimulates Cell Cycle Progression through PI3K/Akt Pathway

  • Lee, Shin-Hee;Pyo, Chul-Woong;Hahm, Dae Hyun;Kim, Jiyoung;Choi, Sang-Yun
    • Molecules and Cells
    • /
    • v.28 no.1
    • /
    • pp.37-42
    • /
    • 2009
  • Iron binding lactoferrin (Lf) is involved in the control of cell cycle progression. However, the molecular basis underlying the effects of Lf on cell cycle control, as well as its target genes, remains incompletely understood. In this study, we have demonstrated that a relatively low level of ironsaturated Lf, Lf($Fe^{3+}$), can stimulate S phase cell cycle entry, and requires Akt activation in MCF-7 cells. Lf($Fe^{3+}$) immediately induced Akt phosphorylation at Ser473, which subsequently induced the phosphorylation of two G1-checkpoint Cdk inhibitors, $p21^{Cip/WAF1}$ and $p27^{kip1}$. The Lf($Fe^{3+}$)-induced phosphorylation of Cdk inhibitors impaired their nuclear import behavior, thereby inducing cell cycle progression. However, the treatment of cells with a PI3K inhibitor, LY294002, almost completely blocked Lf($Fe^{3+}$)-stimulated cell cycle progression. LY294002 treatment abrogated Lf($Fe^{3+}$)-induced Akt activation, and prevented the cytoplasmic localization of $p27^{kip1}$. Higher levels of $p21^{Cip/WAF1}$ were also detected in the cytoplasmic sub-cellular compartment as a measure of cellular response to Lf($Fe^{3+}$). Consequently, the degree of phosphorylation of retinoblastoma protein was enhanced in response to Lf($Fe^{3+}$). Therefore, we conclude that Lf($Fe^{3+}$), as a potential antagonist of Cdk inhibitors, can facilitate the functions of E2F during progression to S phase via the Akt signaling pathway.

Caspase-3 Specifically Cleaves $p21^{WAF1/CIP1}$ in the Earlier Stage of Apoptosis in SK-HEP-1 Human Hepatoma Cells

  • Park, Jeong-Ae;Kim, Kyu-Won;Kim, Shin-Il;Lee, Seung-Ki
    • Proceedings of the Ginseng society Conference
    • /
    • 1998.06a
    • /
    • pp.231-243
    • /
    • 1998
  • In the present study, we provide evidence that ginsenoside $Rh_2$ (G-$Rh_2$) as well as staurosporine induces apoptosis of human hepatoma SK-HEP-1 cells by caspase 3-mediated processing of $p21^{WAFI/CIPI}$ in the early stage of apoptosls. Immunoblottings showed that G-$Rh_2$ as well as statrosporine induced the processing of caspase-3 to an active form, pl7. In stable Bcl-2 transfectants however, G-$Rh_2$ induced DNA fragmentation, while staurosporine did not. In the early stage of apoptosis, $p21^{WAFI/CIPI}$ was detected to undergo proteolytic processing specifically conducted by caspase-3. $p21^{WAFI/CIPI}$ translated in vitro was cleaved into a p14 fragment, when incubated with cell extracts obtained from either G-$Rh_2$- or staurosporine-treated cells. Cleavage was equally inhibited in both cases by adding Ac-DEVD-cho, a specific caspase-3 inhibitor, but not by Ac-YVkD-cho, a specific caspase-l inhibitor. Similarly, $p21^{WAFI/CIPI}$ was efficiently leaved by recombinant caspase-3 overexpressed in E. coli. Moreover, the endogenous $p21^{WAFI/CIPI}$ of untreated-cell extracts was also cleaved by recombinant caspase-3. Mutation analysis allowed identification of two caspase-3 cleavage sites, $DHVD^{112}$/L and $SMTD^{149}$/F, which are located within, or near the interaction domains for cyclins, Cdks, and PCNA. Taken together, these results show that G-$Rh_2$ as well as staurosporine increases caspase-3 activity, which in turn directly cleaves $p21^{WAFI/CIPI}$ resulting in elevation of Cdk kinase activity in the early stages of apoptosis. We propose that proteolytic cleavage of $p21^{WAFI/CIPI}$ is a functionally relevant event that allows unleashing the cyclin/Cdk activity from the inhibitor seen in the earlier stage of apoptosis, the event of which may be associated with the triggering mechanism for the execution of apoptosis.

  • PDF

Isolation and Biological Properties of Novel Cell Cycle Inhibitor, HY558, Isolated from Penicillium minioluteum F558

  • Lee, Chul-Hoon;Lim, Hae-Young;Kim, Min-Kyoung;Cho, Youl-Hee;Oh, Deok-Kun;Kim, Chang-Jin;Lim, Yoon-Gho
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.3
    • /
    • pp.470-475
    • /
    • 2002
  • In the course of screening for a novel cell cycle inhibitor, a potent Cdk 1 inhibitor, HY558, was found from the culture broth of Penicillium minioluteum F558 isolated from a soil sample. The molecular ion of HY558 was identified at m/z 329 (MH+) with a molecular formula of $C_20H_44ON_2$. HY558 exhibited selective antiproliferative effects on various human cancer cell lines. Its $IC_50$ values were estimated to be 0.29 mM on HepG2, 0.30 mM on HeLa, 0.30 mM on HL6O, 0.33 mM on HT-29, and 0.25 mM on AGS cells. Interestingly, Hy558 demonstrated no antiproliferative effect with normal lymphocytes used as the control, and a low level of inhibition on the proliferation of A549 cancer cells. A flow cytometric analysis of HepG2 cells revealed an appreciable arrest of cells at the G1 and G2/M phases of the cell cycle following treatment with Hy558. furthermore, DNA fragmentation due to apoptosis was observed in HeLa cells treated with 0.46 mM of HY558.