• Title/Summary/Keyword: CDC Kinase

Search Result 75, Processing Time 0.024 seconds

Induction of G2/M Arrest of the Cell Cycle by Genistein in Human Bladder Carcinoma and Leukemic Cells (인체 방광암 및 백혈병세포에서 genistein에 의한 세포주기 G2/M arrest 유발에 관한 연구)

  • Kim, Eu-Kyum;Myong, You-Ho;Song, Kwan-Sung;Lee, Ki-Hong;Rhu, Chung-Ho;Choi, Yung-Hyun
    • Journal of Life Science
    • /
    • v.16 no.4
    • /
    • pp.589-597
    • /
    • 2006
  • Genistein, a natural isoflavonoid phytoestrogen, is a strong inhibitor of protein tyrosine kinase and DNA topoisomerase activities. There are several studies documenting molecular alterations leading to cell cycle arrest and induction of apoptosis by genistein as a chemopreventive agent in a variety of cancer cell lines; however, its mechanism of action and its molecular targets on human bladder carcinoma and leukemic cells remain unclear. In the present study, we have addressed the mechanism of action by which genistein suppressed the proliferation of T24 bladder carcinoma and U937 leukemic cells. Genistein significantly inhibited the cell growth and induced morphological changes, and induced the G2/M arrest of the cell cycle in both T24 and U937 cells with a relatively stronger cytotoxicity in U937. The G2/M arrest in T24 cells was associated with the inhibition of cyclin A, cyclin B1 and Cdc25C protein expression without alteration of tumor suppressor p53 and cyclin-dependent kinase (Cdk) inhibitor p21(WAF1/CIP1). However, the inhibitory effects of genistein on the cell growth of U937 cells were connected with a marked inhibition of cyclin B1 and an induction of Cdk inhibitor p21 proteins by p53-independent manner. These data suggest that genistein may exert a strong anticancer effect and additional studies will be needed to evaluate the different mechanisms between T24 and U937 cells.

Molecular Signatures in Chicken Lungs Infected with Avian Influenza Viruses

  • Jeong Woong Park;Marc Ndimukaga;Jaeyoung Heo;Ki-Duk Song
    • Korean Journal of Poultry Science
    • /
    • v.50 no.4
    • /
    • pp.193-202
    • /
    • 2023
  • Influenza IAVs are encapsulated negative-strand RNA viruses that infect many bird species' respiratory systems and can spread to other animals, including humans. This work reanalyzed previous microarray datasets to identify common and specific differentially expressed genes (DEGs) in chickens, as well as their biological activities. There were 760 and 405 DEGs detected in HPAIV and LPAIV-infected chicken cells, respectively. HPAIV and LPAIV have 670 and 315 DEGs, respectively, with both viruses sharing 90 DEGs. Because of HPAIV infection, numerous genes were implicated in a fundamental biological function of the cell cycle, according to the functional annotation of DEGs. Of the targeted genes, expressions of CDC Like Kinase 3 (CLK3), Nucleic Acid Binding Protein 1 (NABP1), Interferon-Inducible Protein 6 (IFI6), PIN2 (TERF1) Interacting Telomerase Inhibitor 1 (PINX1), and Cellular Communication Network Factor 4 (WISP1) were altered in DF-1 cells treated with polyinosinic:polycytidylic acid (PIC), a toll-like receptor 3 (TLR3) ligand, suggesting that transcription of these genes be controlled by TLR3 signaling. To gain a better understanding of the pathophysiology of AIVs in chickens, it is crucial to focus more research on unraveling the mechanisms through which AIV infections may manipulate host responses during the infection process. Insights into these mechanisms could facilitate the development of novel therapeutic strategies.

Oocyte Maturation Process of Zebrafish (Danio rerio), an Emerging Animal Model (새로운 실험 동물 모델인 제브라피쉬(Danio rerio)의 난자 성숙 기작)

  • Han, Seung Jin
    • Journal of Life Science
    • /
    • v.25 no.10
    • /
    • pp.1184-1195
    • /
    • 2015
  • The zebrafish is an emerging vertebrate model organism in reproductive biology. The oocyte maturation of zebrafish is triggered by maturation inducing hormone (MIH, 17α,20β-Dihydroxy-4-pregnen-3-one). In almost all animals, the oocyte maturation is governed by activation of pre-MPF which consists of cyclinB and inactive Cdk1. In the oocyte of Xenopus and mice, the activity of Cdk1 is regulated in two ways, one is the interaction with cyclinB and the other is phosphorylation/dephosphorylation of T14/Y15 residues on the Cdk1 by Wee1 and Cdc25. Unlike Xenopus and mice that have a sufficient amount of pre-MPF, pre-MPF is absent in GV oocyte of most teleost including zebrafish. Therefore, the activation of MPF during zebrafish oocyte maturation might totally depend on de novo synthesis of cyclinB proteins. It is reported that the translation of maternal mRNA is regulated by combination of several RNA binding proteins such as CPEB, Dazl, Pum1/Pum2, and insulin-like growth factor2 mRNA-binding protein 3 in the zebrafish oocytes. However, the definitive mechanism of these proteins to regulate the translation of stored maternal mRNAs remains to be elucidated. Therefore, the investigation of the maturation process of the zebrafish oocyte will provide new information that can help identify the role of translational control in early vertebrate oocyte maturation.

Cell Viability in $G_0$-like Stationary Phase of Schizosaccharomyces pombe: Roles of Psp1/Sds23 and Ufd2

  • Jang, Young-Joo;Ji, Jae-Hoon;Chung, Kyung-Sook;Kim, Dong-Uk;Hoe, kwang-Lae;Won, Mi-Sun;Yoo, Hyang-Sook
    • Proceedings of the Microbiological Society of Korea Conference
    • /
    • 2005.05a
    • /
    • pp.110-113
    • /
    • 2005
  • Under the condition of nutritional deprivation, actively growing cells prepare to enter $G_0$-like stationary phase. Protein modification by phosphorylation/dephosphorylation or ubiqutination contributes to transfer cells from active cell cycle to dormant stage. We show here that Psp1/Sds23, which functions in association with the 20S cyclosome/APC (1) and is essential for cell cycle progression in Schizosaccharomyces pombe (2), is phosphorylated by stress-activated MAP kinase Sty1 and protein kinase A, as well as Cdc2/cyclinB, upon entry into stationary phase. Three serines at the positions 18,333 and 391 are phosphorylated and overexpression of Psp1 mutated on these sites causes cell death in stationary phase. These modifications are required for the binding of Spufd2, a S.pombe homolog of multiubiquitin chain assembly factor E4 in ubiquitin fusion degradation pathway. Deletion of Spufd2 gene led to increase cell viability in stationary phase, indicating that S. pombe Ufd2 functions to inhibit cell growth at this stage to maintain cell viability. Moreover, Psp1 enhances the multiubiquitination function of Ufd2, suggesting that Psp1 phosphorylated by sty1 and PKA kinases is associated with the Ufd2-dependent protein degradation pathway, which is linked to stress tolerance, to maintain cell viability in the $G_0$-like stationary phase.

  • PDF

Knockdown of UHRF1 by Lentivirus-mediated shRNA Inhibits Ovarian Cancer Cell Growth

  • Yan, Feng;Shao, Li-Jia;Hu, Xiao-Ya
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.4
    • /
    • pp.1343-1348
    • /
    • 2015
  • Human UHRF1 (ubiquitin-like PHD and RING finger domain-containing 1) has been reported to be over-expressed in many cancers, but its role in ovarian cancer remains elusive. Here, we determined whether knockdown of UHRF1 by lentivirus-mediated shRNA could inhibit ovarian cancer cell growth. Lentivirus-mediated short hairpin RNAs (lv-shRNAs-UHRF1) were designed to trigger the gene silencing RNA interference (RNAi) pathway. The efficiency of lentivirus-mediated shRNA infection into HO-8910 and HO-8910 PM cells was determined using fluorescence microscopy to observe lentivirus-mediated GFP expression and was confirmed to be over 80 percent. UHRF1 expression in infected HO-8910 and HO-8910 PM was evaluated by real-time PCR and Western blot analysis. The Cell Counting Kit-8 (CCK-8) assay was used to measure cell viability; flow cytometry and Hoechst 33342 assay was applied to measure cell cycle arrest and apoptosis. Cell invasion was assessed using transwell chambers. Our results demonstrated that the loss of UHRF1 promoted HO-8910 and HO-8910 PM cell apoptosis, while inhibiting cell proliferation. In addition, UHRF1 knockdown significantly inhibited the invasion of human ovarian cancer cells. In the present study, we also showed that depleting HO-8910 cells of UHRF1 caused activation of the DNA damage response pathway, with the cell cycle arrested in G2/M-phase. The DNA damage response in cells depleted of UHRF1 was illustrated by phosphorylation of CHK (checkpoint kinase) 2 on Thr68, phosphorylation of CDC25 (cell division control 25) on Ser 216 and phosphorylation of CDK1 (cyclin-dependent kinase 1) on Tyr 15.

Anticancer Activity of Novel Daphnane Diterpenoids from Daphne genkwa through Cell-Cycle Arrest and Suppression of Akt/STAT/Src Signalings in Human Lung Cancer Cells

  • Jo, Si-Kyoung;Hong, Ji-Young;Park, Hyen Joo;Lee, Sang Kook
    • Biomolecules & Therapeutics
    • /
    • v.20 no.6
    • /
    • pp.513-519
    • /
    • 2012
  • Although the immense efforts have been made for cancer prevention, early diagnosis, and treatment, cancer morbidity and mortality has not been decreased during last forty years. Especially, lung cancer is top-ranked in cancer-associated human death. Therefore, effective strategy is strongly required for the management of lung cancer. In the present study, we found that novel daphnane diterpenoids, yuanhualine (YL), yuanhuahine (YH) and yuanhuagine (YG) isolated from the flower of Daphne genkwa (Thymelaeaceae), exhibited potent anti-proliferative activities against human lung A549 cells with the $IC_{50}$ values of 7.0, 15.2 and 24.7 nM, respectively. Flow cytometric analysis revealed that the daphnane diterpenoids induced cell-cycle arrest in the G0/G1 as well as G2/M phase in A549 cells. The cell-cycle arrests were well correlated with the expression of checkpoint proteins including the up-regulation of cyclin-dependent kinase inhibitor p21 and p53 and down-regulation of cyclin A, cyclin B1, cyclin E, cyclin dependent kinase 4, cdc2, phosphorylation of Rb and cMyc expression. In the analysis of signal transduction molecules, the daphnane diterpenoids suppressed the activation of Akt, STAT3 and Src in human lung cancer cells. The daphnane diterpenoids also exerted the potent anti-proliferative activity against anticancer-drug resistant cancer cells including gemcitabine-resistant A549, gefitinib-, erlotinib-resistant H292 cells. Synergistic effects in the growth inhibition were also observed when yuanhualine was combined with gemcitabine, gefitinib or erlotinib in A549 cells. Taken together, these findings suggest that the novel daphnane diterpenoids might provide lead candidates for the development of therapeutic agents for human lung cancers.

Analysis of X Irradiation Related Genes in HL60 Cells Using cDNA Microarray (cDNA Microarray를 이용한 HL60 세포주에서 방사선 조사 관련 유전자의 검색 및 분석)

  • Park, Keon-Uk;Hwang, Mi-Sun;Suh, Seong-Il;Suh, Min-Ho;Kwon, Taeg-Kyu;Park, Jong-Wook;Cho, Jae-We;Choi, Eun-Ju;Baek, Won-Ki
    • The Journal of the Korean Society for Microbiology
    • /
    • v.35 no.4
    • /
    • pp.299-308
    • /
    • 2000
  • Recently developed cDNA microarray or DNA chip technology allows expression monitoring of expression of hundreds and thousands of genes simultaneously and provides a format for identifying genes as well as changes in their activity. In order to search for changes in gene expression after X irradiation in HL60 cells, cDNA microarray technique was done. In this study, expression of 588 human genes (including oncogenes, tumor suppressor genes, cell cycle regulator genes, intracellular signal transduction modulator genes, apoptosis related genes, transcription factor genes, growth factors and receptor genes, cytokine genes, etc) were analyzed. For cDNA microarray analysis mRNAs were extracted from control and 8 Gy-irradiated HL60 cells. As a result the changes in expression of several genes were observed. This alteration of gene expression was confirmed by reverse transcription-polymerase chain reaction. The expression of heat shock 60 KD protein, c-jun, erythroid differentiation factor, CPP32, myeloid cell nuclear differentiation antigen, MAP kinase-activated protein kinase, interleukin-8, monocyte chemotactic peptide 1 and RANTES genes was increased, but the expression of p55CDC gene was decreased after X irradiation.

  • PDF

RAS inhibitor를 이용한 항암제의 개발에 관하여

  • 어미숙
    • The Microorganisms and Industry
    • /
    • v.19 no.4
    • /
    • pp.32-35
    • /
    • 1993
  • ras는 활성화 형태인 GTP bound form과 비활성화 형태인 GDP bound form의 두 형태로 존재하며 두 형태를 매개하는 regulatory protein들에 의해 그 activity가 조절된다. 또한 ras는 GTP와 GDP에 강한 친화성이 있으며 세포내에는 GTP보다 GDP가 더 많이 있어서 평소에는 ras가 GDP와 결합하고 있다가 활성화될때만 GTP와 결합하는 것으로 추정된다. GDP bound ras는 guanine nucloetide exchange protein(GEP)에 의해 활성화된 GTP bound form으로 전환되며 ras의 기능이 발휘된 후에는 GTPase activating protein(GAP)에 의해 비활성화된다. Yeast의 경우 IRA1과 2의 product가 GAP의 역할을 하는 것으로 알려져 있고 CDC25 gene의 product가 GEP의 기능을 담당하는 것으로 알려져 있다. NF1 gene은 Von Recklinghausen Neurofibromatosis Type I 질병을 가진 환자에게서 발견되었는데 부분적으로 sequencing한 결과에 따르면 yeast의 IRA1/2, mammalian GAP gene product와 protein homology가 높은 것으로 나타났다. Yeast의 경우 IRA1/2 gene의 손실이나 mammalian ras gene의 transformation으로 인한 heat shock sensitivity가 NF1 gene(2,3) 혹은 GAP(4)의 expression으로 suppression된 것으로 보아 NF1이 GAP protein으로서 ras를 불활성화 시킨다는 것이 판명되었다. 결론적으로 ras의 활성은 GTP bound 혹은 GDP bound의 양쪽형태를 이동하면서 조절되는데 이 기능은 GAP과 GEP 또는 그의 유사 protein들에 의해 수행되며 이러한 regulatory protein들은 growth factor, cytokine 그리고 protein kinase 같은 signal에 의해 활성화된다고 생각된다. 본 총설에서는 ras protein의 여러가지 성질보다는 ras의 modification과 관련하여 항암제로 사용할 수 있는 ras에 specific한 약품개발의 가능성과 현재 알려진 ras의 inhibitor를 중심으로 논하고자 한다.

  • PDF

The Role of Cell Cycle Regulators in Normal and Malignant Cell Proliferation

  • Lee, Jin-Hwa
    • Biomedical Science Letters
    • /
    • v.16 no.2
    • /
    • pp.71-74
    • /
    • 2010
  • Cell proliferation is governed by precise and orderly process the regulation of which involves many different proteins. The key enzyme for cell growth and arrest is cyclin dependent kinases (cdks). In human cells, several cdks orchestrate four distinct cell cycle phases (M, $G_1$, S and $G_2$ ) and they sequentially operate in an order of cdc1, cdk4, cdk6 and cdk2. The regulatory components of cdks consist of cyclins and two family of cdk inhibitors, INK4 (inhibitors of cdk4) and KIP (kinase inhibitor protein). $G_1$ regulatory molecules for cdk mainly respond to environmental cues of mitogenic and anti-mitogenic stimuli and therefore influence activities of $G_1$ cdks, namely, cdk4/6 and cdk2. $G_1$ inhibitors include $p21^{CIP}$ and $p27^{KIP1}$. Between them, $p27^{KIP1}$ has attracted attentions of many researchers because of its characteristic regulatory features and diverse functions. Besides, the role of $p27^{KIP1}$ in cancer development warrants further studies in the future. Therefore, this review will focus on the recent findings and especially on the complexity of regulatory mechanisms of $p27^{KIP1}$.

Induction of Apoptotic Cell Death in Human Jurkat T Cells by a Chlorophyll Derivative (Cp-D) Isolated from Actinidia arguta Planchon

  • Park, Youn-Hee;Chun, En-Mi;Bae, Myung-Ae;Seu, Young-Bae;Song, Kyung-Sik;Kim, Young-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.10 no.1
    • /
    • pp.27-34
    • /
    • 2000
  • The chloroform and methanol (2;1, v/v) extract from an edible plant, Actinidia arguta Planchon, appeared to possess antitumor activity against human leukemias Jurkat T and U937 cells through inducing apoptosis. The substance in the solvent extract was purified by silica gel column chromatography, preparative TLC, and Sephadex LH-20 column chromatography. Characteristics of the substance analyzed by UV scanning analysis, $^1H$ and $^{13}C$ NMR spectra suggested that the substance belongs to the chlorophyll derivatives-like group. The $IC_{50}$ value of the chlorophyll derivative (Cp-D) determined by MTT assay was $15\mu\textrm{g}/ml$ for Jurkat, $10\mu\textrm{g}/ml$ for U937, and $11.4\mu\textrm{g}/ml$ for HL-60m and was more toxic to these leukemias than to solid tumors or normal fibroblast. In order to elucidate cellular mechanisms underlying the cytotoxicity, the effect of the Cp-D on Jurkat T cells was investigated. When cells were treated with the Cp-D at a concentration of $15\mu\textrm{g}/ml$, [3H]thymidine incorporation declined rapidly and wa undetectable in 1h. However, no significant changes were made in the cell cycle distribution of the cells by 24h. The sub-Gl peak representing apoptotic cells began to be detectable in 36h, at which time apoptotic DNA fragmentation was also detected on agarose gel electrophoresis, demonstrating that the cytotoxic effect of the Cp-D is attributable to the induced apoptosis. Under the same conditions, although the protein level of cyclin-dependent kinases such as cdc4, csk6, cdk2, and cdc2 was not significantly changed until 24h, the kinase activity of all c안 rapidly declined and reached a minimum level within 1-6h and then recovered to the initial level by 12h and sustained until 24h. These results suggest that inactivation of cdks at an inappropriate time during the cell cycle progression in jurkat T cells following a treatment with the Cp-D leads to induction of apoptotic cell death.

  • PDF