• Title/Summary/Keyword: CD38

Search Result 420, Processing Time 0.026 seconds

Enzymatic study on lymphocyte CD38 (임파구 CD38의 효소학적 연구)

  • Park, Hyang Ran;Kim, Jong Ju;An, Nyeon Hyoung
    • Korean Journal of Clinical Pharmacy
    • /
    • v.8 no.1
    • /
    • pp.29-34
    • /
    • 1998
  • Murine CD38 is a 42 kDa type II glycoprotein expressed on cell surface of both B and T lymphocytes. CD38 is a multifunctional enzyme that catalyzes the formation and hydrolysis of cyclic adenosine diphosphoribose (cADPR): ADP-ribosyl cyclase activity of CD38 catalyzes the formation of cADPR from NAD and cADPR hydrolase activity of CD38 catalyzes the hydrolysis of cADPR to ADP-ribose (ADPR). And also, CD38 has the catalytic activity of NAD glycohydrolase (NADase) which catalyzes the hydrolysis of catalyzes the formation and hydrolysis of cyclic adenosine diphosphoribose (cADPR): ADP-ribosyl cyclase activity of CD38 catalyzes the formation of cADPR from NAD to ADPR. In this study, we attempted to purify CD38 from mouse lymphocytes by using the immobilized anti-CD38 monoclonal antibody. The single step immuno-affinity column chromatography resulted in homogeneous purification, showing a single protein of 42 kDa on a SDS polyacrylamide gel. We have investigated the effects of various inhibitors on the enzyme activities of the purified CD38. Cibacron blue (0.5 mM) inhibited all three enzyme activities of CD38, NADase, ADP-ribosyl cyclase and cADPR hydrolase activities. ADPR (2 mM) showed inhibitory effect on both cADPR hydrolase activity and NADase, but not on ADP-ribosyl cyclase activity. However, ATP (2 mM) inhibited only cADPR hydrolase activity. $Zn^{2+}$ (1 mM) showed similar inhibitory effect as that of ADPR, but activated cyclase activity These results suggest that CD38 has three different catalytic activity domains which might be differentially regulated by their specific inhibitors.

  • PDF

Cytochalasin D Regulates Retinoic Acid Induced COX-2 Expression but not Dedifferentiation via p38kinase Pathway in Rabbit Articular Chondrocytes

  • Yu, Seon-Mi;Kim, Song-Ja
    • Biomedical Science Letters
    • /
    • v.15 no.4
    • /
    • pp.343-347
    • /
    • 2009
  • Cytochalasin D (CD) is known as a disruptor of actin cytoskeleton architecture in chondrocytes. We have studied the role of CD in retinoic acid (RA) caused dedifferentiation and inflammation responses in rabbit articular chondrocytes. We have examined the effect of CD on RA induced dedifferentiation of chondrocytes. CD inhibited RA induced dedifferentiation determined by Western blot analysis and Alcian blue staining in rabbit articular chondrocytes. Also, CD additionally reduced inflammation response molecules such as cyclooxygenase-2 (COX-2) and prostaglandin $E_2$ ($PGE_2$) in RA treated cells. Treatment of CD reduced phosphorylation of p38 by treatment of RA. Inhibiton of p38kinase with SB203580 reduced expression of COX-2 and production of $PGE_2$ by treatment of CD in RA treated cells. But, Inhibiton of p38kinase with SB203580 did not any relationship with effect of CD on RA caused dedifferentiation. In summary, our results indicate that CD regulates RA reduced expression of COX-2 and production of PGE2 via p38kinase pathway.

  • PDF

Senescence Effects of Angelica sinensis Polysaccharides on Human Acute Myelogenous Leukemia Stem and Progenitor Cells

  • Liu, Jun;Xu, Chun-Yan;Cai, Shi-Zhong;Zhou, Yue;Li, Jing;Jiang, Rong;Wang, Ya-Ping
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.11
    • /
    • pp.6549-6556
    • /
    • 2013
  • Leukemia stem cells (LSCs) play important roles in leukemia initiation, progression and relapse, and thus represent a critical target for therapeutic intervention. Hence, it is extremely urgent to explore new therapeutic strategies directly targeting LSCs for acute myelogenous leukemia (AML) therapy. We show here that Angelica sinensis polysaccharide (ASP), a major active component in Dong quai (Chinese Angelica sinensis), effectively inhibited human AML $CD34^+CD38^-$ cell proliferation in vitro culture in a dose-dependent manner while sparing normal hematopoietic stem and progenitor cells at physiologically achievable concentrations. Furthermore, ASP exerted cytotoxic effects on AML K562 cells, especially LSC-enriched $CD34^+CD38^-$ cells. Colony formation assays further showed that ASP significantly suppressed the formation of colonies derived from AML $CD34^+CD38^-$ cells but not those from normal $CD34^+CD38^-$ cells. Examination of the underlying mechanisms revealed that ASP induced $CD34^+CD38^-$ cell senescence, which was strongly associated with a series of characteristic events, including up-regulation of p53, p16, p21, and Rb genes and changes of related cell cycle regulation proteins P16, P21, cyclin E and CDK4, telomere end attrition as well as repression of telomerase activity. On the basis of these findings, we propose that ASP represents a potentially important agent for leukemia stem cell-targeted therapy.

A study of faraday rotation for $Cd_{1-x}Mn_{x}Te$ single crystals ($Cd_{1-x}Mn_{x}Te$단결정의 Faraday 회전에 관한 연구)

  • 박효열
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.10 no.4
    • /
    • pp.286-291
    • /
    • 2000
  • $Cd_{1-x}Mn_{x}Te$ singe crystals were grown by the vertical Bridgman method and the Faraday rotations were measured as a function of wavelength and magnetic field. The Verdet constants were evaluated using the result of Faraday rotation. The Verdet constants were maximum at nearly absorption edge and increased for $0\leq x \leq 0.38 $ but decreased for x>0.40. We found that large Faraday rotation occur in $Cd_{0.62}Mn_{0.38}Te$ at nearly absorption edge wavelength was more useful for a magnetic field sensor than any other crystals, and $Cd_{0.60}Mn_{0.40}Te$ crystal was useful in this application when wavelength is He-Ne laser wavelength.

  • PDF

Vitamin C Up-regulates Expression of CD80, CD86 and MHC Class II on Dendritic Cell Line, DC-1 Via the Activation of p38 MAPK

  • Kim, Hyung Woo;Cho, Su In;Bae, Seyeon;Kim, Hyemin;Kim, Yejin;Hwang, Young-Il;Kang, Jae Seung;Lee, Wang Jae
    • IMMUNE NETWORK
    • /
    • v.12 no.6
    • /
    • pp.277-283
    • /
    • 2012
  • Vitamin C is an essential water-soluble nutrient which primarily exerts its effect on host defense mechanisms and immune homeostasis, but the mechanism related to immune-potentiation is poorly understood. Since dendritic cells (DCs) are known as a potent antigen presenting cell (APC) that could enhance the antigen specific immune responses, we investigate the effects of vitamin C on activation of DCs and its related mechanism by using dendritic cell lines, DC-1. First, we found that there was no damage on DC-1 by 2.5 mM of vitamin C. In the presence of vitamin C, the expression of CD80, CD86, and MHC molecules was increased, but it was decreased by the pre-treatment of SB203580, p38 MAPK-specific inhibitor. We confirmed the phosphorylation of p38 MAPK was increased by the treatment of vitamin C. Taken together, these results suggest that vitamin C could enhance the activity of dendritic cells via the up-regulation of the expression of CD80, CD86, and MHC molecules and the activation of p38 MAPK is related to this process.

M. tuberculosis Somatic Antigen Specific CD8+T cell Responses in BCG-Vaccinated Subjects (BCG 예방접종을 받은 개체에서 유도되어 있는 결핵균 균체항원에 특정한 CD8+T 세포의 보호 면역반응)

  • Cho, Jang-Eun;Cho, Sang-Nae;Lee, Kyung Wha;Park, Seung Kyu;Cho, Sungae
    • Tuberculosis and Respiratory Diseases
    • /
    • v.59 no.3
    • /
    • pp.272-278
    • /
    • 2005
  • Background : The immune responses mediated by CD8+T cells are known to be significant in controlling M. tuberculosis infections. In order to determine the role of cytotoxic CD8+T cells in the protective immune mechanism in latently infected subjects, this study examined whether or not the cytotoxic immune responses of CD8+T cells specific to the M. tuberculosis somatic antigens are induced in BCG vaccinated healthy subjects. Methods : Cytotoxicity and $IFN-{\gamma}$ elispot assays were used to investigate the activities of CD8+T cells specific for the $thyA_{30-38}$ peptide epitope in circulating peripheral blood mononuclear cells (PBMC) from BCG-vaccinated HLA-A*0201 and A*0206 subjects. Results : The results indicate the cytotoxic and $IFN-{\gamma}$ immune responses of CD8+T cells specific for $thyA_{30-38}$ were induced in BCG vaccinated healthy subjects. Conclusion : The cytotoxic and $IFN-{\gamma}$ responses by CD8+T cells specific for the M. tuberculosis somatic antigens are induced in BCG-vaccinated subjects, and appear to be involved in the protective immune mechanism in latently infected people against a M. tuberculosis infection.

CD38 Inhibition Protects Fructose-Induced Toxicity in Primary Hepatocytes

  • Soo-Jin Lee;Sung-E Choi;Seokho Park;Yoonjung Hwang;Youngho Son;Yup Kang
    • Molecules and Cells
    • /
    • v.46 no.8
    • /
    • pp.496-512
    • /
    • 2023
  • A fructose-enriched diet is thought to contribute to hepatic injury in developing non-alcoholic steatohepatitis (NASH). However, the cellular mechanism of fructose-induced hepatic damage remains poorly understood. This study aimed to determine whether fructose induces cell death in primary hepatocytes, and if so, to establish the underlying cellular mechanisms. Our results revealed that treatment with high fructose concentrations for 48 h induced mitochondria-mediated apoptotic death in mouse primary hepatocytes (MPHs). Endoplasmic reticulum stress responses were involved in fructose-induced death as the levels of phosho-eIF2α, phospho-C-Jun-N-terminal kinase (JNK), and C/EBP homologous protein (CHOP) increased, and a chemical chaperone tauroursodeoxycholic acid (TUDCA) prevented cell death. The impaired oxidation metabolism of fatty acids was also possibly involved in the fructose-induced toxicity as treatment with an AMP-activated kinase (AMPK) activator and a PPAR-α agonist significantly protected against fructose-induced death, while carnitine palmitoyl transferase I inhibitor exacerbated the toxicity. However, uric acid-mediated toxicity was not involved in fructose-induced death as uric acid was not toxic to MPHs, and the inhibition of xanthine oxidase (a key enzyme in uric acid synthesis) did not affect cell death. On the other hand, treatment with inhibitors of the nicotinamide adenine dinucleotide (NAD)+-consuming enzyme CD38 or CD38 gene knockdown significantly protected against fructose-induced toxicity in MPHs, and fructose treatment increased CD38 levels. These data suggest that CD38 upregulation plays a role in hepatic injury in the fructose-enriched diet-mediated NASH. Thus, CD38 inhibition may be a promising therapeutic strategy to prevent fructose-enriched diet-mediated NASH.

Robinetin Alleviates Metabolic Failure in Liver through Suppression of p300-CD38 Axis

  • Ji-Hye Song;Hyo-Jin Kim;Jangho Lee;Seung-Pyo Hong;Min-Yu Chung;Yu-Geun Lee;Jae Ho Park;Hyo-Kyoung Choi;Jin-Taek Hwang
    • Biomolecules & Therapeutics
    • /
    • v.32 no.2
    • /
    • pp.214-223
    • /
    • 2024
  • Metabolic abnormalities in the liver are closely associated with diverse metabolic diseases such as non-alcoholic fatty liver disease, type 2 diabetes, and obesity. The aim of this study was to evaluate the ameliorating effect of robinetin (RBN) on the significant pathogenic features of metabolic failure in the liver and to identify the underlying molecular mechanism. RBN significantly decreased triglyceride (TG) accumulation by downregulating lipogenesis-related transcription factors in AML-12 murine hepatocyte cell line. In addition, mice fed with Western diet (WD) containing 0.025% or 0.05% RBN showed reduced liver mass and lipid droplet size, as well as improved plasma insulin levels and homeostatic model assessment of insulin resistance (HOMA-IR) values. CD38 was identified as a target of RBN using the BioAssay database, and its expression was increased in OPA-treated AML-12 cells and liver tissues of WD-fed mice. Furthermore, RBN elicited these effects through its anti-histone acetyltransferase (HAT) activity. Computational simulation revealed that RBN can dock into the HAT domain pocket of p300, a histone acetyltransferase, which leads to the abrogation of its catalytic activity. Additionally, knock-down of p300 using siRNA reduced CD38 expression. The chromatin immunoprecipitation (ChIP) assay showed that p300 occupancy on the promoter region of CD38 was significantly decreased, and H3K9 acetylation levels were diminished in lipid-accumulated AML-12 cells treated with RBN. RBN improves the pathogenic features of metabolic failure by suppressing the p300-CD38 axis through its anti-HAT activity, which suggests that RBN can be used as a new phytoceutical candidate for preventing or improving this condition.

Distribution of Hazardous Heavy Metals(Hg, Cd and Pb) in Fishery Products, Sold at Garak Wholesale Markets in Seoul (서울시내 수산 시장에서 유통되는 수산물의 유해성 중금속(Hg, Cd 및 Pb) 분포에 관하여)

  • 함희진
    • Journal of Food Hygiene and Safety
    • /
    • v.17 no.3
    • /
    • pp.146-151
    • /
    • 2002
  • The contents [average(minimum∼maximum), Unit:mg/kg] of hazardous heavy metals(Hg, Cd and Pb) were estimated from 951 fishery products in Seoul(468 fishes,373 shellfishes, 39 crustaceans and 71 others) from January to December in 2001 by Atomic Absorption Spectrometer. Hg contents showed in shellfishes [0.033(N.D.∼0.19)]>others(0.026(N.D.∼0.11)]>crustaceans[0.026(N.D.∼0.09)]>fishes[0.018(N.D.∼0.19)], Misgurnus mizolepis(0.19) and Tegillarca granosa(0.19) were the highest. Pb content were shellfishes [0.223(N.D.∼l.38)] >fishes[0.213(N.D.∼1.68)]>others[0.15(N.D.∼0.39)]>crustaceans[0.144(N.D.∼0.444)], and Misgurnus mizolepis (1.68)>Hypomesus olidus(1.44)>Tapes philippinarum(1.38)>Anguilla japonica(1.35). Also, Tegillarca granosa(1.85) was the most Cd contents among shellfishes[0.288(N.D.∼1.85)].