• Title/Summary/Keyword: CD147

Search Result 78, Processing Time 0.027 seconds

Molecular association of CD98, CD29, and CD147 critically mediates monocytic U937 cell adhesion

  • Kim, Mi-Yeon;Cho, Jae Youl
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.20 no.5
    • /
    • pp.515-523
    • /
    • 2016
  • Adhesion events of monocytes represent an important step in inflammatory responses induced by chemokines. The ${\beta}1$-integrin CD29 is a major adhesion molecule regulating leukocyte migration and extravasation. Although several adhesion molecules have been known as regulators of CD29, the molecular interactions between CD29 and its regulatory adhesion molecules (such as CD98 and CD147) have not been fully elucidated. Therefore, in this study, we examined whether these molecules are functionally, biochemically, and cell-biologically associated using monocytic U937 cells treated with aggregation-stimulating and blocking antibodies, as well as enzyme inhibitors. The surface levels of CD29, CD98, and CD147 (but not CD43, CD44, and CD82) were increased. The activation of CD29, CD98, and CD147 by ligation of them with aggregation-activating antibodies triggered the induction of cell-cell adhesion, and sensitivity to various enzyme inhibitors and aggregation-blocking antibodies was similar for CD29-, CD98-, and CD147-induced U937 cell aggregation. Molecular association between these molecules and the actin cytoskeleton was confirmed by confocal microscopy and immunoprecipitation. These results strongly suggest that CD29 might be modulated by its biochemical and cellular regulators, including CD98 and CD147, via the actin cytoskeleton.

The Stimulation of CD147 Induces MMP-9 Expression through ERK and NF-${\kappa}B$ in Macrophages: Implication for Atherosclerosis

  • Kim, Ju-Young;Kim, Won-Jung;Kim, Ho;Suk, Kyoung-Ho;Lee, Won-Ha
    • IMMUNE NETWORK
    • /
    • v.9 no.3
    • /
    • pp.90-97
    • /
    • 2009
  • Background: CD147, as a cellular receptor for cyclophilin A (CypA), is a multifunctional protein involved in tumor invasion, inflammation, tissue remodeling, neural function, and reproduction. Recent observations showing the expression of CD147 in leukocytes indicate that this molecule may have roles in inflammation. Methods: In order to investigate the role of CD147 and its ligand in the pathogenesis of atherosclerosis, human atherosclerotic plaques were analyzed for the expression pattern of CD147 and CypA. The cellular responses and signaling molecules activated by the stimulation of CD147 were then investigated in the human macrophage cell line, THP-1, which expresses high basal level of CD147 on the cell surface. Results: Staining of both CD147 and CypA was detected in endothelial cell layers facing the lumen and macrophage-rich areas. Stimulation of CD147 with its specific monoclonal antibody induced the expression of matrix metalloproteinase (MMP)-9 in THP-1 cells and it was suppressed by inhibitors of both ERK and NF-${\kappa}B$. Accordingly, the stimulation of CD147 was observed to induce phosphorylation of ERK, phosphorylation-associated degradation of $I{\kappa}B$, and nuclear translocation of NF-${\kappa}B$ p65 and p50 subunits. Conclusion: These results suggest that CD147 mediates the inflammatory activation of macrophages that leads to the induction of MMP-9 expression, which could play a role in the pathogenesis of inflammatory diseases such as atherosclerosis.

e-Pharmacophore modeling and in silico study of CD147 receptor against SARS-CoV-2 drugs

  • Nisha Kumari Pandit;Simranjeet Singh Mann;Anee Mohanty;Sumer Singh Meena
    • Genomics & Informatics
    • /
    • v.21 no.2
    • /
    • pp.17.1-17.12
    • /
    • 2023
  • Coronavirus has left severe health impacts on the human population, globally. Still a significant number of cases are reported daily as no specific medications are available for its effective treatment. The presence of the CD147 receptor (human basigin) on the host cell facilitates the severe acute respiratory disease coronavirus 2 (SARS-CoV-2) infection. Therefore, the drugs that efficiently alter the formation of CD147 and spike protein complex could be the right drug candidate to inhibit the replication of SARS-CoV-2. Hence, an e-Pharmacophore model was developed based on the receptor-ligand cavity of CD147 protein which was further mapped against pre-existing drugs of coronavirus disease treatment. A total of seven drugs were found to be suited as pharmacophores out of 11 drugs screened which was further docked with CD147 protein using CDOCKER of Biovia discovery studio. The active site sphere of the prepared protein was 101.44, 87.84, and 97.17 along with the radius being 15.33 and the root-mean-square deviation value obtained was 0.73 Å. The protein minimization energy was calculated to be -30,328.81547 kcal/mol. The docking results showed ritonavir as the best fit as it demonstrated a higher CDOCKER energy (-57.30) with correspond to CDOCKER interaction energy (-53.38). However, authors further suggest in vitro studies to understand the potential activity of the ritonavir.

Comparison Analysis of Immune Cells between CT26 Tumor Bearing Mice and Normal Mice

  • Lee, Na Kyung;Kim, Hong Sung
    • Biomedical Science Letters
    • /
    • v.20 no.3
    • /
    • pp.147-155
    • /
    • 2014
  • It has well studied that immune cells are strongly related to tumor progression and tumor suppression. To identify the difference of immune cell between tumor bearing mice and normal mice, we examined systemically the immune cell of CT26 tumor bearing mice on 21 days after tumor cell administration. As previously reported, CD4+ and CD8+ T cells population of tumor bearing mice significantly decreased 38% and 30% on day 21 compared to that of normal mice, respectively. All subpopulation of CD4 and CD8+ T cell significantly decreased, except CD49b+ T cell subpopulation. But, myeloid cell population ($CD11b^{high}$ and all Gr-1+ subpopulation) of tumor bearing mice significantly increased on day 21. Especially, all subpopulation of CD11b+Gr-1+ cell of tumor bearing mice significantly increased on day 21. Also, Foxp3+$CD25^{high}$ CD4 T cell (regulatory T cells) population significantly increased on day 21. These results suggest that tumor can induce the decline of T lymphocyte and the expansion of myeloid cells and regulatory T cells, and provide the basic information for the study of tumor immunology.

Histological Responses of the Antarctic Bivalve Laternula elliptica to a Short-term Sublethal-level Cd Exposure

  • Choi, Hee-Seon, J.;Ahn In-Young;Lee, Yong-Suk;Kim, Ko-Woon;Jeong, Kye-Heon
    • Ocean and Polar Research
    • /
    • v.25 no.2
    • /
    • pp.147-154
    • /
    • 2003
  • To develop fast and sensitive biomarkers for metal exposures in Antarctic marine organisms we examined histological alterations of an Antarctic sentinel bivalve species Laternula elliptica following a short-term exposure to a sublethal-level of Cd. Distinct histological alterations of tissues and cells of the gills, kidneys, and digestive glands were observed after 8-to 16-hours of exposure to Cd while an increase of Cd concentrations in tissues was not detectable. Most alterations were highly localized in the epithelium of the three tissues; epithelia were found to be detached from the remaining tissue parts. In addition ultra-structural changes such as cytosolic vacuolization, dilation of nucleus and rER membranes were detected in all three tissues, which suggested that the clams are subject to sublethal stresses. Thus, histological and ultrastructural changes on localized tissue parts were rapid and sensitive, suggesting that they may serve biomarkers for Cd exposures. Linkages between the shown ulrastructural changes and higher biological organization level responses are to be established by longer-term exposure experiments.

Determination of Heavy Metals for Sediment Proximated to Water in Lake(II) (호소내 퇴적물의 수질오염물질 분석(II) - 중금속 -)

  • Park, Sun-Ku;Kim, Sung-Soo;Ko, Oh-Suk
    • Analytical Science and Technology
    • /
    • v.14 no.2
    • /
    • pp.140-146
    • /
    • 2001
  • The study was carried out to analyze the pollutants, Fe, Cu, Cr, Zn, Cd for 3 sediments of 5 sites collected from lake in K river basin. 5cm sediment, which is nearly proximated to water from sediment of depth 30cm, showed higher Fe, Cu, Cr, Zn, Cd data than another 5-10cm and 10cm sediment, which is separated from sediment of depth 30cm. Also, 5cm sediment nearly proximated to water showed the following data: Fe, 34.9-39.8mg/L, Cu, 34.5-44.8mg/L, Cr, 68.0-79.2mg/L, Zn, 147.4-126.0mg/L, Cd, 2.2-1.0mg/L, respectively. From this results, we know the fact that the pollution degree of sediment has an effect on the water quality in like and stream.

  • PDF

Modulatory Effect of BAY11-7082 on CD29-mediated Cell-cell Adhesion in Monocytic U937 Cells (BAY11-7082에 의한 U937 세포의 CD29-매개성 세포간 유착과정 조절 효과)

  • Kim, Byung-Hun;Cho, Jae-Youl
    • YAKHAK HOEJI
    • /
    • v.52 no.5
    • /
    • pp.412-417
    • /
    • 2008
  • BAY11-7082 was initially found to be an anti-inflammatory drug with NF-${\kappa}B$ inhibitory property. In this study, we evaluated modulatory function of BAY11-7082 on U937 cell-cell adhesion induced by CD29 (${\beta}1$-integrins). BAY11-7082 strongly blocked functional activation of CD29 (${\beta}1$-integrins), as assessed by cell-cell adhesion assay. However, this compound did not block a simple activation of CD29, as assessed by cell-fibronectin adhesion assay. In particular, to understand molecular mechanism of BAY11-7082-mediated inhibition, the regulatory roles of CD29-induced actin cytoskeleton rearrangement under cell-cell adhesion and surface level of CD29 were examined using confocal and flow cytometic analysis. Interestingly, this compound strongly suppressed the molecular association of actin cytoskeleton with CD29 at cell-cell adhesion site. Moreover, BAY11-7082 also diminished surface levels of CD29 as well as its-associated adhesion molecule CD147, but not other adhesion molecules such as CD18 and CD43. Therefore, our data suggest that BAY11-7082 may be involved in regulating immune responses managed by CD29-mediated cell-cell adhesion.

Regulatory Role of CD29 $({\beta}1-integrins)$ in Monocytic Cell Functions (단핵구 기능 수행에서의 $CD29({\beta}1-integrins)$ 조절 역할)

  • Kim, Byung-Hun;Cho, Jae-Youl
    • YAKHAK HOEJI
    • /
    • v.52 no.1
    • /
    • pp.48-55
    • /
    • 2008
  • CD29 $({\beta}1-integrins)$ is one of major adhesion molecules involved in regulating cell adhesion, migration and morphological changes. In this study, we investigated the regulatory role of CD29 in monocytic functions using monocytic cell line U937 cells. CD29 was found to be one of highly expressed membrane proteins in U937 cells, according to flow cytometric analysis. The activation of CD29 by agonistic antibody MEM101A and extracellular matrix protein (ECM) fibronectin strongly induced cell-cell and cell-fibronectin adhesions. However, blocking antibodies to CD98 and CD147 showed different inhibitory features in these two adhesion events. Furthermore, U0126, an ERK inhibitor, only blocked cell-cell adhesion but not cell-fibronectin adhesion, indicating that cell-cell or cell-fibronectin adhesion events may be regulated by different molecular mechanisms. Meanwhile, CD29 activation also enhanced ROS generation but not phagocytic ability, and similarly radical scavenger N-acetyl-L-cysteine strongly blocked CD29-mediated cell-cell adhesion, implying that ROS may play a critical role in up-regulating cell-cell adhesion. Therefore, our data suggest that the activation of CD29 may be critically involved in regulating monocytic cell-mediated cell-cell adhesion and ROS generation.

Emerging Pathogenic Bacteria: Mycobacterium avium subsp. paratuberculosis in Foods

  • Kim, Jung-Hoan;Griffiths, Mansel W.
    • Food Science of Animal Resources
    • /
    • v.31 no.2
    • /
    • pp.147-157
    • /
    • 2011
  • Mycobacterium avium paratuberculosis (MAP), the cause of Johne's disease in animals, may be a causative agent of Crohn's disease (CD) in humans, but the evidence supporting this claim is controversial. Milk, meat, and water could be potential sources of MAP transmission to humans. Thus, if the link between MAP and Crohn's disease is substantiated, the fact that MAP has been detected in retail foods could be a public health concern. The purpose of the present study was to review the link between MAP and CD, the prevalence of MAP in foods, heat inactivation, control of MAP during food processing, and detection methods for MAP. Although MAP positive rates in retail milk in nine countries ranged from 0 to 2.9% by the culture method and from 4.5 to 15.5% by PCR, high temperature short time pasteurization can effectively control MAP. The effectiveness of pasteurization to inactivate MAP depends on the initial concentration of the MAP in raw milk. Development of highly sensitive and specific rapid detection methods for MAP may enhance investigation into the relationship between MAP and CD, the prevention of the spread of MAP, and problem-solving related to food safety. Collaboration and efforts by government agencies, the dairy industry, farmers, veterinarians, and scientists will be required to reduce and prevent MAP in food.