• Title/Summary/Keyword: CD14-independent pathway

Search Result 2, Processing Time 0.016 seconds

Lipopolysaccharide-induced Synthesis of IL-1beta, IL-6, TNF-alpha and TGF-beta by Peripheral Blood Mononuclear Cells (내독소에 의한 말초혈액 단핵구의 IL-1beta, IL-6, TNF-alpha와 TGF-beta 생성에 관한 연구)

  • Jung, Sung-Hwan;Park, Choon-Sik;Kim, Mi-Ho;Kim, Eun-Young;Chang, Hun-Soo;Ki, Shin-Young;Uh, Soo-Taek;Moon, Seung-Hyuk;Kim, Yang-Hoon;Lee, Hi-Bal
    • Tuberculosis and Respiratory Diseases
    • /
    • v.45 no.4
    • /
    • pp.846-860
    • /
    • 1998
  • Background: Endotoxin (LPS : lipopolysaccharide), a potent activator of immune system, can induce acute and chronic inflammation through the production of cytokines by a variety of cells, such as monocytes, endothelial cells, lymphocytes, eosinophils, neutrophils and fibroblasts. LPS stimulate the mononucelar cells by two different pathway, the CD14 dependent and independent way, of which the former has been well documented, but not the latter. LPS binds to the LPS-binding protein (LBP), in serum, to make the LPS-LBP complex which interacts with CD14 molecules on the mononuclear cell surface in peripheral blood or is transported to the tissues. In case of high concentration of LPS, LPS can stimulate directly the macrophages without LBP. We investigated to detect the generation of proinflammatory cytokines such as interleukin 1 (IL-1), IL-6 and TNF-$\alpha$ and fibrogenic cytokine, TGF-$\beta$, by peripheral blood mononuclear cells (PBMC) after LPS stimulation under serum-free conditions, which lacks LBPs. Methods : PBMC were obtained by centrifugation on Ficoll Hypaque solution of peripheral venous bloods from healthy normal subjects, then stimulated in the presence of LPS (0.1 ${\mu}g/mL$ to 100 ${\mu}g/mL$ ). The activities of IL-1, IL-6, TNF, and TGF-$\beta$ were measured by bioassaies using cytokines - dependent proliferating or inhibiting cell lines. The cellular sources producing the cytokines was investigated by immunohistochemical stains and in situ hybridization. Results : PBMC started to produce IL-6, TNF-$\alpha$ and TGF-$\beta$ in 1 hr, 4 hrs and 8hrs, respectively, after LPS stimulation. The production of IL-6, TNF-$\alpha$ and TGF-$\beta$ continuously increased 96 hrs after stimulation of LPS. The amount of production was 19.8 ng/ml of IL-6 by $10^5$ PBMC, 4.1 ng/mL of TNF by $10^6$ PBMC and 34.4 pg/mL of TGF-$\beta$ by $2{\times}10^6$ PBMC. The immunoreactivity to IL-6, TNF-$\alpha$ and TGF-$\beta$ were detected on monocytes in LPS-stimulated PBMC. Some of lymphocytes showed positive immunoreactivity to TGF-$\beta$. Double immunohistochemical stain showed that IL-1$\beta$, IL-6, TNF-$\alpha$ expression was not associated with CD14 postivity on monocytes. IL-1$\beta$, IL-6, TNF-$\alpha$ and TGF-$\beta$mRNA expression were same as observed in immunoreactivity for each cytokines. Conclusion: When monocytes are stimulated with LPS under serum-free conditions, IL-6 and TNF-$\alpha$ are secreted in early stage of inflammation. In contrast, the secretion of TGF-$\beta$ arise in the late stages and that is maintained after 96 hrs. The main cells releasing IL-1$\beta$, IL-6, TNF-$\alpha$ and TGF-$\beta$ are monocytes, but also lymphocytes can secret TGF-$\beta$.

  • PDF

Nitric Oxide Dependency in Inflammatory Response-related Gene Transcripts Expressed in Lipopolysaccharide-treated RAW 264.7 Cells

  • Pie, Jae-Eun;Yi, Hyeon-Gyu
    • Molecular & Cellular Toxicology
    • /
    • v.5 no.4
    • /
    • pp.354-363
    • /
    • 2009
  • Cytotoxic Nitric oxide (NO) overproduced by inducible NO Synthase (iNOS or NOS2), which was induced in inflammatory reactions and immune responses directly or indirectly affects the functions as host defense and can cause normal tissue damage. Microarray analysis was performed to identify gene profiles of both NO-dependent and -independent transcripts in RAW 264.7 macrophages that use selective NOS2 inhibitors aminoguanidine ($100\;{\mu}M$) and L-canavanine (1 mM). A total of 3,297 genes were identified that were up- or down-regulated significantly over 2-fold in lipopolysaccharide (LPS)-treated macrophages. NO-dependency was determined in the expressed total gene profiles and also within inflammatory conditions-related functional categories. Out of all the gene profiles, 1711 genes affected NO-dependently and -independently in 567 genes. In the categories of inflammatory conditions, transcripts of 16 genes (Pomp, C8a, Ifih1, Irak1, Txnrd1, Ptafr, Scube1, Cd8a, Gpx4, Ltb, Fasl, Igk-V21-9, Vac14, Mbl1, C1r and Tlr6) and 29 geneas (IL-1beta, Mpa2l, IFN activated genes and Chemokine ligands) affected NO-dependently and -independently, respectively. This NO dependency can be applied to inflammatory reaction-related functional classifications, such as cell migration, chemotaxis, cytokine, Jak/STAT signaling pathway, and MAPK signaling pathway. Our results suggest that LPS-induced gene transcripts in inflammation or infection can be classified into physiological and toxic effects by their dependency on the NOS2-mediated NO release.