• Title/Summary/Keyword: CCK-8

Search Result 189, Processing Time 0.024 seconds

A study on the synergistic efficacy of Carthami flos in apoptosis of human gastric cancer by doxorubicin (독소루비신에 의한 인간 위암 세포사멸에서 홍화의 시너지 효능 연구)

  • Kim, Byung Joo
    • Herbal Formula Science
    • /
    • v.30 no.2
    • /
    • pp.59-66
    • /
    • 2022
  • Objectives : This study is to investigate whether Carthami flos exhibits a synergistic effect on the apoptotic effect of doxorubicin on human gastric cancer cells. Methods : We used AGS, a human gastric cancer cell line. To investigate the apoptotic efficacy of doxorubicin and Carthami flos, MTT and CCK-8 methods were used. To confirm apoptosis, cell cycle and mitochondrial membrane potential changes were confirmed. To investigate the mechanism of apoptosis, the reactive oxygen species (ROS) experiment was performed. Results : 1. Doxorubicin or Carthami flos induced cell death in the human gastric cancer cell line AGS. 2. Carthami flos showed a synergistic effect of cell death by doxorubicin. 3. The cell cycle and mitochondrial membrane potential changes revealed that cell death was apoptosis. 4. Apoptosis was related to reactive oxygen species (ROS) generation. Conclusions : This result shows the anticancer synergistic effect of Carthami flos in gastric cancer cells, and is considered to be an important basis for the development of anticancer drugs for Carthami flos.

DH332, a Synthetic β-Carboline Alkaloid, Inhibits B Cell Lymphoma Growth by Activation of the Caspase Family

  • Gao, Pan;Tao, Ning;Ma, Qin;Fan, Wen-Xi;Ni, Chen;Wang, Hui;Qin, Zhi-Hai
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.9
    • /
    • pp.3901-3906
    • /
    • 2014
  • Aim: The purpose of this study was to investigate anti-tumor effects and safety of DH332, a new ${\beta}$-carboline alkaloids derivatives in vitro and in vivo. Materials and Methods: The effects of DH332 on human (RAMOS RA.1) and mouse (J558) B lymphoma cell lines were detected using a CCK-8 kit (Cell Counting Kit-8), and apoptosis was detected by flow cytometry with PI/annexinV staining. Western blotting was used to detected caspase-3 and caspase-8. Neurotoxic and anti-tumor effects were evaluated in animal experiments. Results: DH332 exerts a lower neurotoxicity compared with harmine. It also possesses strong antitumor effects against two B cell lymphoma cell lines with low $IC_{50s}$. Moreover, DH332 could inhibit the proliferation and induce the apoptosis of RAMOS RA.1 and J558 cell lines in a dose-dependent manner. Our results suggest that DH332 triggers apoptosis by mainly activating the caspase signaling pathway. In vivo studies of tumor-bearing BALB/c mice showed that DH332 significantly inhibited growth of J558 xenograft tumors. Conclusions: DH332 exerts effective antitumor activity in vitro and in vivo, and has the potential to be a promising drug candidate for lymphoma therapy.

The Combined Effects of Ginkgo Biloba Extracts and Aspirin on Viability of SK-N-MC, Neuroblastoma Cell Line in Hypoxia and Reperfusion Condition

  • Moon, Sung-Hwan;Lee, Yong-Jik;Park, Soo-Yong;Song, Kwan-Young;Kong, Min-Ho;Kim, Jung-Hee
    • Journal of Korean Neurosurgical Society
    • /
    • v.49 no.1
    • /
    • pp.13-19
    • /
    • 2011
  • Objective: The purpose of this study is to investigate the combined effects of ginkgo biloba extract, ginkgolide A and B and aspirin on SK-N-MC, human neuroblastoma cell viability and mRNA expression of growth associated protein43 (GAP43), Microtubule-associated protein 2 (MAP2), B-cell lymphoma2 (Bcl2) and protein53 (p53) gene in hypoxia and reperfusion condition. Methods: SK-N-MC cells were cultured with Dulbecco's Modified Eagle's Medium (DMEM) media in $37^{\circ}C$, 5% $CO_2$ incubator. The cells were cultured for 8 hours in non-glucose media and hypoxic condition and for 12 hours in normal media and $O_2$ concentration. Cell survival rate was measured with Cell Counting Kit-8 (CCK-8) reagent assay. Reverse transcriptase polymerase chain reaction (RT-PCR) was used to estimate mRNA levels of GAP43, MAP2, Bcl2, and p53 genes. Results: The ginkgolide A and B increased viable cell number decreased in hypoxic and reperfused condition. The co-treatment of ginkgolide B with aspirin also increased the number of viable cells, however, there was no additive effect. Although there was no increase of mRNA expression of GAP43, MAP2, and Bcl2 in SK-N-MC cells with individual treatment of ginkgolide A, B or aspirin in hypoxic and reperfused condition, the co-treatment of ginkgolide A or B with aspirin significantly increased GAP43 and Bcl2 mRNA levels. In MAP2, only the co-treatment of ginkgolide A and aspirin showed increasing effect. The mRNA expression of p53 had no change in all treating conditions. Conclusion: This study suggests that the combined treatments of Ginkgo biloba extracts and aspirin increase the regeneration of neuroblastoma cells injured by hypoxia and reperfusion.

Effects of IL-3 and SCF on Histamine Production Kinetics and Cell Phenotype in Rat Bone Marrow-derived Mast Cells

  • Lee, Haneul Nari;Kim, Chul Hwan;Song, Gwan Gyu;Cho, Sung-Weon
    • IMMUNE NETWORK
    • /
    • v.10 no.1
    • /
    • pp.15-25
    • /
    • 2010
  • Background: Rat mast cells were regarded as a good model for mast cell function in immune response. Methods: Rat bone marrow mast cells (BMMC) were prepared both by recombinant rat IL-3 (rrIL-3) and by recombinant mouse stem cell factor (rmSCF), and investigated for both proliferation and differentiation in time course. Rat BMMC was induced by culture of rat bone marrow cells (BMCs) in the presence of both rrIL-3 (5 ng/ml) and rmSCF (5 ng/ml). Culture media were changed 2 times per week with the cell number condition of $5{\times}10^4/ml$ in 6 well plate. Proliferation was analyzed by cell number and cell counting kit-8 (CCK-8) and differentiation was by rat mast cell protease (RMCP) II and histamine. Results: Cell proliferation rates reached a maximum at 8 or 11 days of culture and decreased thereafter. However, both RMCP II production and histamine synthesis peaked after 11 days of culture. By real time RT-PCR, the level of histidine decarboxylase mRNA was more than 500 times higher on culture day 11 than on culture day 5. By transmission electron microscopy, the cells were heterogeneous in size and contained cytoplasmic granules. Using gated flow cytometry, we showed that cultured BMCs expressed high levels of $Fc{\varepsilon}RI$ and the mast cell antigen, ganglioside, on culture day 11. Conclusion: These results indicate that rat BMMCs were generated by culturing BMCs in the presence of rrII-3 and rmSCF and that the BMMCs have the characteristics of mucosal mast cells.

Induction of Apoptosis in Human Leukemic Cell Lines by Diallyl Disulfide via Modulation of EGFR/ERK/PKM2 Signaling Pathways

  • Luo, Nian;Zhao, Lv-Cui;Shi, Qing-Qiang;Feng, Zi-Qiang;Chen, Di-Long;Li, Jing
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.8
    • /
    • pp.3509-3515
    • /
    • 2015
  • Background: Diallyl disulfide (DADS) may exert potent anticancer action both in vitro and in vivo. Although its effects on cancer are significant, the underlying mechanisms remain unknown. In this study, we sought to elucidate possible links between DADS and pyruvate kinase (PKM2). Materials and Methods: $KG1{\alpha}$, a leukemia cell line highly expressing PKM2 was used with a cell counting kit (CCK)-8 and flow cytometry (FCM) to investigate the effects of DADS. Relationships between PKM2 and DADS associated with phosphorylation of EGFR, ERK1/2 and MEK, were assessed by western blot analysis. Results: In $KG1{\alpha}$ cells highly expressing PKM2, we found that DADS could affect proliferation, apoptosis and EGFR/ERK/PKM2 signaling pathways, abrogating EGF-induced nuclear accumulation of PKM2. Conclusions: These results suggested that DADS suppressed the proliferation of $KG1{\alpha}$ cells, providing evidence that its proapoptotic effects are mediated through the inhibition of EGFR/ERK/PKM2 signaling pathways.

FAM46B inhibits cell proliferation and cell cycle progression in prostate cancer through ubiquitination of β-catenin

  • Liang, Tao;Ye, Xuxiao;Liu, Yuanyuan;Qiu, Xinkai;Li, Zuowei;Tian, Binqiang;Yan, Dongliang
    • Experimental and Molecular Medicine
    • /
    • v.50 no.12
    • /
    • pp.8.1-8.12
    • /
    • 2018
  • FAM46B is a member of the family with sequence similarity 46. Little is known about the expression and functional role (s) of FAM46B in prostate cancer (PC). In this study, the expression of FAM46B expression in The Cancer Genome Atlas, GSE55945, and an independent hospital database was measured by bioinformatics and real-time PCR analysis. After PC cells were transfected with siRNA or a recombinant vector in the absence or presence of a ${\beta}$-catenin signaling inhibitor (XAV-939), the expression levels of FAM46B, C-myc, Cyclin D1, and ${\beta}$-catenin were measured by western blot and realtime PCR. Cell cycle progression and cell proliferation were measured by flow cytometry and the CCK-8 assay. The effects of FAM46B on tumor growth and protein expression in nude mice with PC tumor xenografts were also measured. Our results showed that FAM46B was downregulated but that ${\beta}$-catenin was upregulated in patients with PC. FAM46B silencing promoted cell proliferation and cell cycle progression in PC, which were abrogated by XAV-939. Moreover, FAM46B overexpression inhibited PC cell cycle progression and cell proliferation in vitro and tumor growth in vivo. FAM46B silencing promoted ${\beta}$-catenin protein expression through the inhibition of ${\beta}$-catenin ubiquitination. Our data clearly show that FAM46B inhibits cell proliferation and cell cycle progression in PC through ubiquitination of ${\beta}$-catenin.

Comparison of the Antioxidant Effects of Diallyl Sulfide, Capsaicin, Gingerol and Sulforaphane in $H_2O_2$-Stressed HepG2 Cells (산화스트레스가 유도된 인체 간암세포 (HepG2)에서 Sulforaphane과 Diallyl Sulfide, Capsaicin, Gingerol의 항산화효과 비교연구)

  • Lee, So-Youn;Wi, Hae-Ri;Lee, Myoung-Sook
    • Journal of Nutrition and Health
    • /
    • v.44 no.6
    • /
    • pp.488-497
    • /
    • 2011
  • Oxygen is necessary to sustain life, yet cellular oxygen metabolism creates destructive elements called free radicals. Free radicals are chemically unbalanced and carrying free electrons that can damage molecules, potentially damaging the cell itself. For this reason, many antioxidant products, including supplements and functional foods, are being developed. In particular, natural products are rich sources of pharmacologically active compounds. The purpose of this study was to investigate the antioxidant effects of target biomaterials in Korean traditional spices such as diallyl sulfide (DAS), capsaicin (CAP), and gingerol (GGR), and to investigate the response of the antioxidant defense system to oxidative stress by hydrogen peroxide ($H_2O_2$) compared to sulforaphane (SFN) in HepG2 cells. After the analysis of the cell viability using Cell Counting kit-8 (CCK-8) assay, we determined that the optimum levels were $200{\mu}M$ DAS, $25{\mu}M$ CAP, $50{\mu}M$ GGR, and $12.5{\mu}M$ SFN. Antioxidant enzymes were measured and protein expression was detected by Western blotting. All treatments showed a significant decrease in antioxidant enzyme activity such as superoxide dismutase, catalse, and glutathione peroxidase in HepG2 cells. Additionally, DAS, CAP, GGR and SFN increased the antioxidant system-related transcription factor Nrf2 which was found to be regulated by the activation of MAPK-JNK in this study. In conclusion, these results indicate the protective effects of DAS CAP, GGR, and SFN against $H_2O_2$-induced oxidative stress.

Protective Effect of PineXol® against Amyloid-β-induced Cell Death (아밀로이드 베타로 유도된 신경세포 사멸에 대한 PineXol®의 보호효과)

  • Han, Kyung-Hoon;Lee, Seung-Hee;Park, Kwang-Sung;Song, Kwan-Young;Kim, Jung-Hee;Park, Eun-Kuk;Han, Sung-Hee
    • The Korean Journal of Food And Nutrition
    • /
    • v.30 no.6
    • /
    • pp.1279-1285
    • /
    • 2017
  • $Amyloid-{\beta}$ protein ($A{\beta}$) is known to increase free radical production in neuronal cells, leading to cell death by oxidative stress. The purpose of this study was to evaluate the protective effects of $PineXol^{(R)}$ on $A{\beta}_{25-35}$ induced neuronal cell death. Rat pheochromocytoma (PC-12) cells were pre-treated with $100{\mu}g/mL$ of $PineXol^{(R)}$ for 2 h. The cells were exposed to single dose of $30{\mu}M$ $A{\beta}_{25-35}$ for 24 h. Cell death was assessed by a cell count kit-8 (CCK-8) assay, lactate and dehydrogenase (LDH) release assay. An Apoptotic process was analyzed by a protein expression of the Bcl-2 family using western blotting. Cell viability increased in PC-12 cells treated with both $A{\beta}_{25-35}$ and $PineXol^{(R)}$, compared to the control group. $PineXol^{(R)}$ induced a decrease of the Bcl-2 protein expression (p<0.05), while Bax and Sod1 increased (p<0.05), indicating attenuation of $A{\beta}_{25-35}$ induced apoptosis. These results suggest that $PineXol^{(R)}$ may be a good candidate for the prevention of Alzheimer's disease(AD).

TASK-1 Channel Promotes Hydrogen Peroxide Induced Apoptosis

  • Yun, Ji-Hyun;Kim, Seung-Tae;Bang, Hyo-Weon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.9 no.1
    • /
    • pp.63-68
    • /
    • 2005
  • Hydrogen peroxide ($H_2O_2$) causes oxidative stress and is considered as an inducer of cell death in various tissues. Two-pore domain $K^+$ ($K_{2p}$) channels may mediate $K^+$ efflux during apoptotic volume decreases (AVD) in zygotes and in mouse embryos. In the present study, we sought to elucidate linkage between $K_{2p}$ channels and cell death by $H_2O_2$. Thus $K_{2p}$ channels (TASK-1, TASK-3, TREK-1, TREK-2) were stably transfected in HEK-293 cells, and cytotoxicity assay was preformed using cell counting kit-8 (CCK-8). Cell survival rates were calculated using the cytotoxicity assay data and dose-response curve was fitted to the $H_2O_2$ concentration. Ionic currents were recorded in cell-attached mode. The bath solution was the normal Ringer solution and the pipette solution was high $K^+$ solution. In HEK-293 cells expressing TREK-1, TREK-2, TASK-3, $H_2O_2$ induced cell death did not change in comparison to non-transfected HEK-293. In HEK-293 cells expressing TASK-1, however, dose-response curve was significantly shifted to the left. It means that $H_2O_2$ induced cell death was increased. In cell attached-mode recording, application of $H_2O_2$ (300μM) increased activity of all $K_{2p}$ channels. However, a low concentration of $H_2O_2$ ($50{\mu}M$) increased only TASK-1 channel activity. These results indicate that TASK-1 might participate in $K^+$ efflux by $H_2O_2$ at low concentration, thereby inducing AVD.

Viscum Album Var Hot Water Extract Mediates Anti-cancer Effects through G1 Phase Cell Cycle Arrest in SK-Hep1 Human Hepatocarcinoma cells

  • Cruz, Joseph Flores dela;Kim, Yeon Soo;Lumbera, Wenchie Marie Lara;Hwang, Seong Gu
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.15
    • /
    • pp.6417-6421
    • /
    • 2015
  • Viscum album var (VAV) also known as mistletoe, has long been categorized as a traditional herbal medicine in Asia. In addition to its immunomodulating activities, mistletoe has also been used in the treatment of chronic hepatic disorders in China and Korea. There are numerous reports showing that VAV possesses anti-cancer effects, however influence on human hepatocarcinoma has never been elucidated. In the present study, hot water extracts of VAV was evaluated for its potential anti-cancer effect in vitro. SK-Hep1 cells were treated with VAV (50-400ug/ml) for both 24 and 48 hours then cell viability was measured by cell counting kit-8 (CCK-8). Flow cytometry analysis was used to measure the proportion of SK-Hep1 in the different stages of cell cycle. RT-PCR and Western blot analysis were conducted to measure expression of cell cycle arrest related genes and proteins respectively. VAV dose dependently inhibited the proliferation of SK-Hep1 cells without any cytotoxicity with normal Chang liver cell (CCL-13). Flow cytometry analysis showed that VAV extract inhibited the cell cycle of SK-Hep1 cells via G1 phase arrest. RT-PCR and Western blot analysis both revealed that cyclin dependent kinase 2 (Cdk2) and cyclin D1 gene expression were significantly down regulated while p21 was upregulated dose dependently by VAV treatment. Combined down regulation of Cdk2, Cyclin D1 and up regulation of p21 can result in cell death. These results indicate that VAV showed evidence of anti-cancer activity through G1 phase cell cycle arrest in SK-Hep1 cells.