• 제목/요약/키워드: CCFL electrode

검색결과 44건 처리시간 0.028초

Nb/Ni Clad 전극을 이용한 고효율 CCFL 개발 (Development of CCFL with Nb/Ni Gad Electrode for high efficiency)

  • 박기덕;양승수;박두성;김서윤;임영진
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2005년도 하계학술대회 논문집 Vol.6
    • /
    • pp.441-443
    • /
    • 2005
  • According as CCFL(Cold Cathode Fluorescent lamp) of light source in Backlight unit for Note PC (Personal computer) is presently needed to low power consumption and long life time, the development focus of CCFL is going on the discharge gas, phosphor and electrode material. First of all, discharge voltage characteristic of CCFL is closely connected with electrode material For low discharge voltage, the characteristic of electrode material is needed to low work function, low sputtering ratio and superior manufacturing property. We developed new CCFL with Nb/Ni Clad electrode superior to conventional CCFL. Because Nb/Ni Clad electrode with Ni material and Nb material, the electrical characteristic is superior to other electrode materials. The electrode of Nb/Ni Clad is composed that Ni of outside material has superior manufacturing property and Nb of inside material has low work function. Nb/Ni Clad of new electrode material is made by process of Rolling mill at high pressure and heat treatment. We compared electrical characteristic of Nb/Ni clad electrode with conventional Mo electrode by measurement. Mo electrode and Nb/Ni Clad electrode of cup type with diameter 1.1 mm and length 3.0mm are used to this experiment. Material content of Mo electrode is Mo 100%. But, Nb/Ni Clad electrode is composed by content of Nb 40% and Ni 60%. The result of comparison measurement between new CCFL with Nb/Ni Clad electrode and conventional CCFL was appeared that CCFL with Nb/Ni Clad electrode had superior characteristic than conventional CCFL. As a result of experiment, we completed Note PC with low power consumption and long life time by application of new CCFL with Nb/Ni Clad electrode.

  • PDF

CCFL 전극의 플라즈마 처리에 관한 연구 (Study on Plasma Treatment of electrode for CCFL)

  • 박현식
    • 한국산학기술학회논문지
    • /
    • 제12권3호
    • /
    • pp.1308-1312
    • /
    • 2011
  • CCFL(Cold Cathode Fluorescent Lamp)는 LCD의 BLU와 특수조명용으로 널리 활용되고 있다. CCFL 제조공정에 있어 CCFL 전극 산화막이 형성되어 솔더 불량을 가져오기 때문에 산화 막 제거가 필요하다. 본 논문에서는 CCFL 전극 산화 막 제거를 위하여 플라즈마 처리를 수행하였다. 플라즈마 처리 최적 공정 확보하기위하여 면 저항, XRD, AFM, 솔더링 테스트 등의 분석이 진행되었다. 플라즈마 최적 공정 조건인 사용전력 600W와 처리시간 70초에서 최소의 면 저항과 최대의 솔더 피복 비율이 측정되었다. 이와 같은 현상은 플라즈마 처리로 구리 산화 막 제거에 기인한 것으로 확인되어 플라즈마를 이용한 전극 산화 막 제거 공정은 CCFL 전극 처리 공정에 활용이 기대된다.

미세 용접된 BLU CCFL 전극의 유리비딩 열처리 온도에 따른 접합부 특성 (Characteristics of Microwelded BLU CCFL Electrode in Terms of Glass Beading Heat Treatment Temperature)

  • 김광수;김상덕;권혁동
    • Journal of Welding and Joining
    • /
    • 제27권4호
    • /
    • pp.73-78
    • /
    • 2009
  • Characterization of the microweld CCFL electrode for the TFT-LCD backlight unit was carried out in terms of the glass beading heat treatment conditions. We evaluate the weld zone and parent metal of the microweld CCFL electrodes that were exposed to simulated glass beading heat treatment. The CCFL electrode was composed of the cup made with pure Ni, the pin made with pure Mo and the lead wire made with Ni-Mn alloy. Each part of the electrode was assembled together by micro spot welding process and then the assembled electrodes were exposed to simulated glass beading temperatures of $700^{\circ}C,\;750^{\circ}C$ and $800^{\circ}C$. The microstructures of the microweld CCFL electrode were observed by using optical microscope, scanning electron microscope and EDS. Micro-tensile and microhardness test were also carried out. The results indicated that the grain coarsening in the HAZs(heat affected zones) for both the cup-pin weld and pin-lead wire were exhibited and the grain coarsening of the HAZ for the cup and the lead wire was more obvious than the HAZ of the pin. The micro-tensile test revealed that the fracture occurred at the cup-pin weld zone for all test conditions. The fracture surface could be classified into two parts such as pin portion and cup portion including weld nugget. The failure was seemed to be initiated from the boundary between nugget and pin through the weld joint. The result of the microhardness measurement exhibited that the relatively low hardness value, about 105HV was recorded at the HAZ of the cup. This value was about 50% less than that of the original value of the cup. The reduction of the microhardness was considered as the cause of the grain coarsening due to welding process. It was also appeared that there was no change in electric resistance for the standard electrodes and heat treated electrodes.

LCD Backlight용 외부전극 형광램프의 발광특성 (Luminescent Characteristics of External Electrode Fluorescent Lamp(EEFL) for LCD Backlight Applications)

  • 이순석;임성규
    • 대한전자공학회논문지SD
    • /
    • 제39권12호
    • /
    • pp.1016-1021
    • /
    • 2002
  • LCD backlight용 형광램프(fluorescent lamp, FL)의 전극구조에 따른 발광특성을 평가하였다. 동일한 조건에서 제작된 cold cathode fluorescent lamp(CCFL) 및 EEFL에 대하여 인가전압과 EEFL의 전극 폭에 따른 휘도와 발광효율을 측정, 평가하였다. 12 V에서 측정된 CCFL의 휘도와 발광효율은 각각 27600 cd/㎡ 및 35.3 lm/w를 나타내었다 EEFL의 휘도는 전극면적을 증가시킬수록 증가되었고, 발광효율은 전극 면적이 증가되면서 증가되었다가 전극 폭 20 mm에서 최대값을 나타낸 다음 다시 감소하였다. 20 mm의 전극 폭을 갖는 EEFL에 대하여 12 V와 14 V에서 측정된 휘도와 발광효율은 각각 21600 cd/㎡, 26500 cd/㎡ 및 35.6 lm/w, 34.8 lm/w였다.

LCD 몰리브덴 핀 개발을 위한 전수검사 융합시스템 (All goods Inspection Convergence System for the Development of LCD Molybdenum Pin)

  • 이정익
    • 한국융합학회논문지
    • /
    • 제11권11호
    • /
    • pp.183-187
    • /
    • 2020
  • LCD BLU의 CCFL 전극에 사용되는 몰리브덴 전극의 주요소재인 몰리브덴 컵과 몰리브덴 핀은 국내 가공기술이 개발되지 못하여 전량 일본에서 수입하여 사용되고 있어 CCFL 제조업체들의 납기 및 경쟁력에 부담을 주고 있다. 본 연구에서는 LCD BLU의 CCFL 전극에 사용되는 몰리브덴 핀의 제조 기술을 개발하는 연구로 직선처리 기술개발, 몰리브덴 와이어 표면처리 기술개발, 와이어 절단기술 개발, 몰리브덴 핀의 제작, 검사용 JIG와 Fixture 설계 및 제작, 몰리브덴 핀 시제작 및 해석, 몰리브덴 핀 전수검사 기술개발에 관한 연구를 수행하였으며 본 논문에서는 몰리브덴 핀 제작에 있어 전수검사기 융합설계에 대한 연구를 다루고자 한다.

Comparison of Optical Characteristics between CCFL and EEFL in Direct-type Backlight Unit

  • Han, Jeong-Min;Han, Jin-Woo;Seo, Dae-Shik
    • Transactions on Electrical and Electronic Materials
    • /
    • 제8권6호
    • /
    • pp.268-273
    • /
    • 2007
  • In this study, It was studied about the luminance characteristics of 17 inch direct-type back light using EEFL(external electrode fluorescent lamp) and CCFL(cold cathode fluorescent lamp). The EEFL has a long life time because the electrode is installed outside of lamp. And it is produced in lower price than conventional CCFL. Moreover, it does not need process of installing internal electrode. However, the EEFL technology has several problems such as difficulty of designing driving inverter and preventing this phenomenon along the skin of lamps. We suggested two types of backlight unit for LCD TV application using the EEFL and the CCFL. We found optimized optical design parameters. We set the optical variation parameters such as lamp height, lamp distance, total thickness, and angles of inner walls. We achieved 7580 nits of center luminance, 82% of luminance uniformity by using 20 lamps of the EEFL and 7297 nits of center luminance, 78% of luminance uniformity by using 16 lamps of the CCFL.

직하형 백라이트에서의 CCFL과 EEFL의 광학특성 비교 (Comparis on of Optical Characteristics between CCFL and EEFL in Direct-Type Backlight Unit)

  • 김병용;김종연;김영환;이상극;김종환;한정민;옥철호;서대식
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2007년도 하계학술대회 논문집 Vol.8
    • /
    • pp.428-428
    • /
    • 2007
  • In this study, It was studied about the luminance characteristics of 17inch direct-type back light using EEFL(External Electrode Fluorescent Lamp). EEFI has a long life time because the electrode is installed outside of lamp. And it is produced low price than conventional CCFL. It does not need process of installing internal electrode. But EEFL technology has several problems such as difficulty of design driving inverter, and prevents leckage current along the skin of lamps. Therefore, by the optimizing of inverter properties, 7525 nit center luminance was acquired in almost same power consumption condition. It was almost same luminance in CCFL backlight unit. And it was operated stably in low operating temperature such as the value of $40^{\circ}C$, so that it was adopted in conventional LCD-TV application.

  • PDF

전극용 몰리브덴 핀 제조-몰리브덴 핀 제작 및 검사용 JIG and Fixture 설계 및 제작 융합연구 (Manufacturing of molybdenum pin(CCFL) for electrode - convergency research on design and manufacturing of JIG and Fixture for molybdenum pin manufacturing and inspection)

  • 이정익
    • 한국융합학회논문지
    • /
    • 제11권6호
    • /
    • pp.197-201
    • /
    • 2020
  • LCD BLU의 CCFL 전극에 사용되는 몰리브덴 전극의 주요소재인 몰리브덴 컵과 몰리브덴 핀은 국내 가공기술이 개발되지 못하여 전량 일본에서 수입하여 사용되고 있어 CCFL 제조업체들의 납기 및 경쟁력에 부담을 주고 있다. 본 연구에서는 LCD BLU의 CCFL 전극에 사용되는 몰리브덴 핀의 제조 기술을 개발하는 연구로 직선처리 기술개발, 몰리브덴 와이어 표면처리 기술개발, 와이어 절단기술 개발, 몰리브덴 핀의 제작, 검사용 JIG와 Fixture 설계 및 제작, 몰리브덴 핀 시제작 및 해석, 몰리브덴 핀 전수검사 기술개발에 관한 연구를 수행하였으며 본 논문에서는 몰리브덴 핀제작 및 검사용 JIG and Fixture의 설계 및 제작에 대한 연구를 다루고자 한다.

TFT-LCD 백라이트 유닛(BLU) 램프용 전극 미세 접합부의 강도 및 미세조직 (Microstructure and Strength of the Microjoined Electrode for the Lamp of the LCD Backlight Unit)

  • 김광수;김상덕
    • 한국재료학회지
    • /
    • 제19권1호
    • /
    • pp.7-12
    • /
    • 2009
  • TFT-LCD is the most popular type of flat display panel in the information technology field. The back light unit is a main part of the structure of a TFT-LCD panel. Occasionally, studies have shown that failures of the CCFL of the BLU occur due to the poor weld characteristics of these materials. The aim of this study was to prepare some technical data and to characterize a microjoined electrode for the CCFL. Microstructure examinations, microhardness measurements, resistance measurements and microtensile tests of the microjoined electrode were carried out. The result indicates that a large amount of grain coarsening exists in the heat-affected zone (HAZ) of the weld between the cup and the pin. This grain coarsening of the HAZ between the cup and pin is caused by the welding cycle, which may have an influence on the lowest microhardness values. Fracturing of the microjoined electrode also occurred at the HAZ close to the cup between the weld holding the cup and the pin. Additionally, no specific changes of the electrical resistance among the cup, pin, and lead wire themselves or in the microjoined electrode were observed.