• Title/Summary/Keyword: CCD Image

Search Result 1,125, Processing Time 0.026 seconds

The Investigation for Detection of Crack Initiation in the CFRP Laminates under Flexural Loading Test (굽힘하중에서 탄소섬유 복합적층재의 균열 발생 측정에 관한 연구)

  • Lee, Jun Hyuk;Kwon, Oh Heon
    • Journal of the Korean Society of Safety
    • /
    • v.37 no.5
    • /
    • pp.7-13
    • /
    • 2022
  • Digital image correlation (DIC) is a method used to measure the displacement and strain of structures. It involves transforming and analyzing images before and after deformation using correlation coefficients from irregular light and shade on the surface of structures. In the present study, a microspeckle pattern was applied to the surface of a specimen to identify initial cracking. The test specimen constituted CFRP composites laminated on a curved Al liner The specimen was manufactured by stacking 100 ply of CFRP prepregs in the 0° and 90° directions in a three-point bending test. The equivalent strain was evaluated through DIC analysis after monitoring deformation using a CCD camera. Fracture shape was observed using a microscope. The equivalent strain contour distribution was checked until the maximum load fracture occurred at the center of the test specimen. Variations in the strain indicated the initial occurrence and progression of microcracks. These results can be used to improve the accuracy of detecting micro crack initiation and to achieve structural stability.

A Study on the Method of High-Speed Reading of Postal 4-state Bar Code for Supporting Automatic Processing (우편용 4-state 바코드 고속판독 방법에 관한 연구)

  • Park, Moon-Sung;Kim, Hye-Kyu;Jung, Hoe-Kyung
    • The KIPS Transactions:PartD
    • /
    • v.8D no.3
    • /
    • pp.285-294
    • /
    • 2001
  • Recently many efforts on the development of automatic processing system for delivery sequency sorting have been performed in ETRI, which requires the use of postal 4-state bar code system to encode delivery points. This paper addresses the issue on the extension of read range and the improvement of image processing method. For the improvement of image processing procedure, applied information acquisition method through basic two thresholds onto the horizontal axial line of gray image based on reference information of 4-state bar code symbology. Symbol values are computed after creating two threshold values based on the obtained information through search of horizontal axial values. The implementation result of 4-state bar code reader are obtained the symbol values within 30~60 msec (58,000~116,000 mail item/hour)without noise removal or image rotation in spite of the incline $\pm 45^{\circ}$.

  • PDF

Chromosome Analysis in Clinical Samples by Chromosome Diagnostic System Using Fluorescence in Situ Hybridization (국산 Fluorescence in Situ Hybridization 시스템을 이용한 다양한 검체에서의 염색체 분석)

  • Moon, Shin-Yong;Pang, Myung-Geol;Oh, Sun-Kyung;Ryu, Buom-Yong;Hwang, Do-Yeong;Jung, Byeong-Jun;Choe, Jin;Sohn, Cherl;Chang, Jun-Keun;Kim, Jong-Won;Kim, Seok-Hyun;Choi, Young-Min
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.24 no.3
    • /
    • pp.335-340
    • /
    • 1997
  • Fluorescence in situ hybridization (FISH) techniques allow the enumeration of chromosome abnormalities and from a great potential for many clinical applications. In order to produce quantitative and reproducible results, expensive tools such as a cooled CCD camera and a computer software are required. We have developed a Chromosome Image Processing System (Chips) using FISH that allows the detection and mapping of the genetic aberrations. The aim of our study, therefore, is to evaluate the capabilities of our original system using a black-and-white video camera. As a model system, three repetitive DNA probes (D18Z1, DXZ1, and DYZ3) were hybridized to variety different clinical samples such as human metaphase spreads and interphase nuclei obtained from uncultured peripheral blood lymphocytes, uncultured amniocytes, and germ cells. The visualization of the FISH signals was performed using our system for image acquisition and pseudocoloring. FISH images were obtained by combining images from each of probes and DAPI counterstain captured separately. Using our original system, the aberrations of single or multiple chromosomes in a single hybridization experiment using chromosomes and interphase nuclei from a variety of cell types, including lymphocytes, amniocytes, sperm, and biopsied blastomeres, were enabled to evaluate. There were no differences in the image quality in accordance with FISH method, fluorochrome types, or different clinical samples. Always bright signals were detected using our system. Our system also yielded constant results. Our Chips would permit a level of performance of FISH analysis on metaphase chromosomes and interphase nuclei with unparalleled capabilities. Thus, it would be useful for clinical purposes.

  • PDF

Moving Object Tracking Using MHI and M-bin Histogram (MHI와 M-bin Histogram을 이용한 이동물체 추적)

  • Oh, Youn-Seok;Lee, Soon-Tak;Baek, Joong-Hwan
    • Journal of Advanced Navigation Technology
    • /
    • v.9 no.1
    • /
    • pp.48-55
    • /
    • 2005
  • In this paper, we propose an efficient moving object tracking technique for multi-camera surveillance system. Color CCD cameras used in this system are network cameras with their own IP addresses. Input image is transmitted to the media server through wireless connection among server, bridge, and Access Point (AP). The tracking system sends the received images through the network to the tracking module, and it tracks moving objects in real-time using color matching method. We compose two sets of cameras, and when the object is out of field of view (FOV), we accomplish hand-over to be able to continue tracking the object. When hand-over is performed, we use MHI(Motion History Information) based on color information and M-bin histogram for an exact tracking. By utilizing MHI, we can calculate direction and velocity of the object, and those information helps to predict next location of the object. Therefore, we obtain a better result in speed and stability than using template matching based on only M-bin histogram, and we verified this result by an experiment.

  • PDF

Development of Portable Laryngeal Stroboscope (휴대형 후두 스트로보스콥의 개발)

  • Lee, Jae-Woo;Kwon, Soon-Bok;Lee, Byung-Joo;Lee, Jin-Choon;Goh, Eui-Kyung;Chon, Kyong-Myong;Wang, Soo-Geun;Ro, Jung-Hoon
    • Journal of the Korean Society of Laryngology, Phoniatrics and Logopedics
    • /
    • v.17 no.1
    • /
    • pp.28-37
    • /
    • 2006
  • Purpose: Evaluation of vocal cord vibration is very important in cases of voice disorders. There are several equipments for examining the vocal fold vibration such as laryngeal stroboscope, ultra high-speed digital imaging system, and videokymograph. Among these, laryngeal stroboscope is the most popular equipment because of easy to examine the laryngeal pathology. However, current laryngo-stroboscopes are too bulky to move and relatively expensive. The purpose of this research is to develope a portable laryngeal stroboscope of equivalent performance with the current equipments. Methods and Materials: Recently developed high luminescent white LEDs(light emitting diodes) are placed at the head of the endoscope as light sources for the CCD image sensor which is also placed at the head with imaging lens. This arrangement eliminates the bulky light source like expensive halogen or xenon lamps as well as the optical light guiding cables. The LEDs are controlled to flash in phase with the voice frequency of the examinee. The CCD captures these strobo images and converts them into video signals for examinations. Results: There was no functional differences between preexisting stroboscope and the newly developed stroboscope of this study. LED light sources and microprocessor based control circuits of the stroboscope enabled the development of flicker-less, hand-held, portable and battery-operating stroboscope. Conclusion: The developed stroboscope is cost-effective, small-sized, easy to use and very easy desirable to bring and to use in any place.

  • PDF

Observation of Ignition Characteristics of Coals with Different Moisture Content in Laminar Flow Reactor (층류 반응기를 이용한 수분함량에 따른 석탄 휘발분의 점화 특성에 관한 연구)

  • Kim, Jae-Dong;Jung, Sung-Jae;Kim, Gyu-Bo;Chang, Young-June;Song, Ju-Hun;Jeon, Chung-Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.5
    • /
    • pp.451-457
    • /
    • 2011
  • The main objective of this study is to investigate the variation in the ignition characteristics of coals as a function of moisture content in a laminar flow reactor (LFR) equipped with a fuel moisture micro-supplier designed by the Pusan Clean Coal Center. The volatile ignition position and time were observed experimentally when a pulverized coal with moisture was fed into the LFR under burning conditions similar to those at the exit of the pulverizer and real boiler. The reaction-zone temperature along the centerline of the reactor was measured with a $70-{\mu}m$, R-type thermocouple. For different moisture contents, the volatile ignition position was determined based on an average of 15 to 20 images captured by a CCD camera using a proprietary image-processing technique. The reaction zone decreased proportionally as a function of the moisture content. As the moisture content increased, the volatile ignition positions were 2.92, 3.36, 3.96, and 4.65 mm corresponding to ignition times of 1.46, 1.68, 2.00, and 2.33 ms, respectively. These results indicate that the ignition position and time increased exponentially. We also calculated the ignition-delay time derived from the adiabatic thermal explosion. It showed a trend that was similar to that of the experimental data.

The Design of Wide Angle Mobile Camera Corrected Optical Distortion for Peripheral Area (주변부 상의 왜곡을 보정한 모바일 광각 카메라의 광학적 설계)

  • Kim, Se-Jin;Jeong, Hye-Jung;Lim, Hyeon-Seon
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.18 no.4
    • /
    • pp.503-507
    • /
    • 2013
  • Purpose: This study was to design wide angle mobile camera corrected optical distortion for peripheral area, which were reduced optical distortion and TV distortion by using 4 aspherical lenses. Methods: The optical design was satisfied with ${\pm}1%$ optical distortion in viewing angle of $95^{\circ}$ and total length of optical system was less than 4.5 mm which was considering a thickness of mobile camera. 1/3.2 inch (5M) CCD sensor was used in the optical system and set design condition to satisfy MTF which was over than 20% in 140 lp/mm. Results: Optimized wide angle mobile camera showed ${\pm}1%$ optical distortion in full field of $95^{\circ}$ viewing angle and TV distortion was 0.46% so that distortion of peripheral area was reduce. MTF showed over than 20% in every field. Ray aberration and astigmatism were small amount so that it showed stable performance. Conclusions: Obtain wider and clearer view which is reduced image distortion of surrounding area via optical method in wide angle mobile camera which has wider view angle than current mobile camera. And it was able to fix a demerit when it occurred via software correction. It is able to apply to study of camera which is related to spectacles.

NARROW-BAND SPECTROPHOTOMETRY OF COMET HALE-BOPP (C/1995 O1) NEAR PERIHELION I : PHOTOMETRIC BEHAVIOR OF $C_2$, $C_3$, CN MOLECULAR BANDS (헤일-밥 혜성(Comet Hale-Bopp, C/1995 O1)에 대한 근일점 근처에서의 분광측광 I : $C_2$, $C_3$, CN 분자 방출선의 측광학적 특성)

  • 성언창;김호일;윤재혁
    • Journal of Astronomy and Space Sciences
    • /
    • v.17 no.2
    • /
    • pp.199-210
    • /
    • 2000
  • We present the results from narrow-band spectrophotometry of Comet Hale-Bopp (C/1995 O1) near perihelion obtained at Sobaeksan Optical Astronomy Observatory 61cm telescope equipped with PM 512 CCD camera(512$\times$512, 0.5"/pixel) and narrow-band filter set for the comet on 19 nights from February 21 to May 1, 1997. We discuss molecular emission band morphology and photometric behavior of Comet Hale-Bopp. The morphology of CN band shows more symmetric light distributions than $C_2$ or $C_3$ bands. On other hand, $C_2$ and $C_3$ band have more compact light distributions than CN band. Similar to wide-band image, molecular band morphology shows spiral structures at the core of the comet. The CN surface brightness variation with changing heliocentric distance shows difference from those of $C_2$ and $C_3$. The brightness, however, of these molecular bands near perihelion shows previously known 7day period light variations.

  • PDF

Characteristics of Ocean Scanning Multi-spectral Imager(OSMI) (Ocean Scanning Multi-spectral Imager (OSMI) 특성)

  • Young Min Cho;Sang-Soon Yong;Sun Hee Woo;Sang-Gyu Lee;Kyoung-Hwan Oh;Hong-Yul Paik
    • Korean Journal of Remote Sensing
    • /
    • v.14 no.3
    • /
    • pp.223-231
    • /
    • 1998
  • Ocean Scanning Multispectral Imager (OSMI) is a payload on the Korean Multi-Purpose SATellite (KOMPSAT) to perform worldwide ocean color monitoring for the study of biological oceanography. The instrument images the ocean surface using a whisk-broom motion with a swath width of 800 km and a ground sample distance (GSD) of less than 1 km over the entire field-of-view (FOV). The instrument is designed to have an on-orbit operation duty cycle of 20% over the mission lifetime of 3 years with the functions of programmable gain/offset and on-orbit image data storage. The instrument also performs sun calibration and dark calibration for on-orbit instalment calibration. The OSMI instrument is a multi-spectral imager covering the spectral range from 400 nm to 900 nm using a Charge Coupled Device (CCD) Focal Plane Array (FPA). The ocean colors are monitored using 6 spectral channels that can be selected via ground commands after launch. The instrument performances are fully measured for 8 basic spectral bands centered at 412, 443, 490, 510, 555, 670, 765 and 865 nm during ground characterization of instalment. In addition to the ground calibration, the on-orbit calibration will also be used for the on-orbit band selection. The on-orbit band selection capability can provide great flexibility in ocean color monitoring.

Opto-Mechanical Detailed Design of the G-CLEF Flexure Control Camera

  • Jae Sok Oh;Chan Park;Kang-Min Kim;Heeyoung Oh;UeeJeong Jeong;Moo-Young Chun;Young Sam Yu;Sungho Lee;Jeong-Gyun Jang;Bi-Ho Jang;Sung-Joon Park;Jihun Kim;Yunjong Kim;Andrew Szentgyorgyi;Stuart McMuldroch;William Podgorski;Ian Evans;Mark Mueller;Alan Uomoto;Jeffrey Crane;Tyson Hare
    • Journal of The Korean Astronomical Society
    • /
    • v.56 no.2
    • /
    • pp.169-185
    • /
    • 2023
  • The GMT-Consortium Large Earth Finder (G-CLEF) is the first instrument for the Giant Magellan Telescope (GMT). G-CLEF is a fiber feed, optical band echelle spectrograph that is capable of extremely precise radial velocity measurement. G-CLEF Flexure Control Camera (FCC) is included as a part in G-CLEF Front End Assembly (GCFEA), which monitors the field images focused on a fiber mirror to control the flexure and the focus errors within GCFEA. FCC consists of an optical bench on which five optical components are installed. The order of the optical train is: a collimator, neutral density filters, a focus analyzer, a reimager and a detector (Andor iKon-L 936 CCD camera). The collimator consists of a triplet lens and receives the beam reflected by a fiber mirror. The neutral density filters make it possible a broad range star brightness as a target or a guide. The focus analyzer is used to measure a focus offset. The reimager focuses the beam from the collimator onto the CCD detector focal plane. The detector module includes a linear translator and a field de-rotator. We performed thermoelastic stress analysis for lenses and their mounts to confirm the physical safety of the lens materials. We also conducted the global structure analysis for various gravitational orientations to verify the image stability requirement during the operation of the telescope and the instrument. In this article, we present the opto-mechanical detailed design of G-CLEF FCC and describe the consequence of the numerical finite element analyses for the design.