• 제목/요약/키워드: CCCma

검색결과 28건 처리시간 0.026초

미래토지이용 및 기후변화에 따른 하천유역의 유출특성 분석 (Analysis of Future Land Use and Climate Change Impact on Stream Discharge)

  • 안소라;이용준;박근애;김성준
    • 대한토목학회논문집
    • /
    • 제28권2B호
    • /
    • pp.215-224
    • /
    • 2008
  • SLURP 준 분포형 수문모형을 이용하여 예측된 토지이용 자료와 미래 기후변화 시나리오에 의한 기상자료 및 식생지수 정보를 고려한 상태에서 하천유역의 유출에 미치는 영향을 분석하였다. 경안천 경안수위관측소 상류유역($260.4km^2$)을 대상으로 4개년(1999-2002) 동안의 일별 유출량 자료를 바탕으로 모형의 보정(1999-2000)과 검증(2001-2002)을 실시하였다. 토지이용 예측은 1996년, 2000년, 2004년의 Landsat TM 및 ETM+ 위성영상을 이용하여 CA-Markov 기법으로 검증(2004)을 실시한 후, 미래의 토지이용(2030, 2060, 2090)을 예측하였다. 예측된 토지이용은 시간이 경과할수록 산림과 논은 지속적으로 감소하고 도시, 초지, 나지 등은 증가하는 경향을 보였다. 미래의 식생정보 예측을 위하여 NOAA/AVHRR 위성영상으로부터 추출된 월별 NDVI(1998-2002)와 월평균기온간의 선형 회귀식을 도출하여 미래의 식생지수 정보(2030, 2060, 2090)를 추정하였다. IPCC SRES A2, B2 기후변화 시나리오에 대한 CCCma CGCM2 모의결과 값(2030s, 2060s, 2090s)을 Stochastic Spatio-Temporal Random Cascade Model(SST-RCM) 기법을 이용하여 downscaling 한 뒤 하천유출의 변화를 분석한 결과, 기후변화에 따른 하천유출율은 1999-2002년의 59%에 비해 미래에는 13%~34%로 감소하는 것으로 모의되었고, 반면에 토지이용의 변화에 대한 유출율은 0.1%~1% 증가하였다.

통계적 축소기법을 이용한 유역단위 기후변화 시나리오 생성 (Generation of Basin Scale Climate Change Scenario Using Statistical Down Scaling Techniques)

  • 이용원;경민수;김형수;김병식
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2009년도 학술발표회 초록집
    • /
    • pp.1250-1253
    • /
    • 2009
  • 기후변화가 수자원에 미치는 영향을 평가하는데 있어서 주로 기후모형인 Global Climate Model (GCM)이 사용되고 있다. 그러나 이러한 기후모형의 공간적 해상도는 $3^{\circ}{\sim}4^{\circ}$ 정도로 한반도의 경우 바다로 묘사되기도 한다. 따라서 GCM을 이용해서 기후변화가 유역단위 수자원에 미치는 영향을 평가하기 위해서는 일반적으로 축소기법이 사용되고 있다. 현재까지 다양한 축소기법이 개발되었으며, 대표적인 모형으로는 SDSM(Statistical Down-Scaling Model)과 LARS-WG(The Long Ashton Research Station Weather Generator)이 있다. 이에 본 연구에서는 SDSM, LARS-WG와 함께 최근에 축소기법으로 사용되고 있는 인공신경망 기법을 이용해서 CCCMA(Canadian Centre for Climate Modeling and Analysis)에서 일 단위로 모의한 CGCM3 A2 시나리오를 기반으로 우포늪의 강우 및 온도시나리오를 구축하였다. 대상 지점인 우포늪은 경상남도 창녕군 우포늪(위도 $35^{\circ}$33', 경도 $128^{\circ}$25')에 위치하고 있으며, 모의 기간은 CASE1의 경우 현재, CASE2는 2050$^{\sim}$ 2080년, CASE3는 2080년$^{\sim}$2100년으로 각각 구분하여 축소기법을 적용하였다. 축소결과 축소기법에 따라 일정정도 차이를 보이기는 하였으나 강우와 온도 모두 증가하게 됨을 확인하였다.

  • PDF

다지점 인공신경망을 이용한 한강수계 기후전망 (Han River Basin climate forecast using multi-site artificial neural network)

  • 강부식;문수진;김정중
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2011년도 학술발표회
    • /
    • pp.371-371
    • /
    • 2011
  • 본 연구에서는 한강유역 내 관측기간이 충분한 기상청 지상관측소 10개소를 선정하고 CCCma(Canadian Century for Climate modeling and analysis)에서 제공하는 자료에 대한 인공신경망기법 상세화 적용을 실시하였다. 인공신경망의 학습을 위해 CGCM3.1/T63 20C3M시나리오(reference scenario)의 22개 2D변수 중 물리적으로 민감도가 높다고 판단되는 GCM_Prec, huss, ps를 입력변수로 선정하였으며 인공신경망 학습기간은 1991년~1995년, 검증기간은 1996년~2000년, 예측기간은 2011년~2100년으로 A1B, A2 B1 시나리오 등 다양한 기후변화 시나리오를 통해 예측band를 제시하고자 하였다. 하지만 공간상관을 고려하기 위하여 각 관측소에 대하여 인공신경망 학습을 하는 경우 관측소간 spatial correlation 및 spatial cluster구현이 어렵기 때문에 Spatial Rectangular Pulse모형을 이용하고자 하였으나, 강수면적에 대한 scale의 결정이 어렵다는 단점을 확인 하고 본 연구에서는 Random Cascade 모형을 이용하여 ${\beta}$를 통한 강수면적 scale(rainy area fraction)을 결정하고자 하였다. Random Cascade모형의 기법은 격자단위의 downscaling기법으로 강수대의 공간적 형상을 재현하며 스케일에 비종속적인(scale-invariant)프랙탈 특성을 이용하여 매개변수를 최소화 할 수 있는 장점을 가진 기법으로 한강유역 1Km내외 강우장을 만들어 topographic effect를 첨가하고자 한다.

  • PDF

RCP 시나리오 기반 농업용 저수지의 내한능력 평가 (Assessment of Anti-Drought Capacity for Agricultural Reservoirs using RCP Scenarios)

  • 박나영;최진용;유승환;이상현
    • 한국농공학회논문집
    • /
    • 제55권3호
    • /
    • pp.13-24
    • /
    • 2013
  • Agriculture is affected directly by climate conditions and changes, and it is necessary to understand the impact of climate change on agricultural reservoirs which are the main water resources for paddy fields in Korea. This study aimed to evaluate the impact of climate change on the anti-drought capacity including water supply capability (WSC) and drought response ability (DRA) of agricultural reservoirs based on RCP (Representative Concentration Pathway) 4.5 and 8.5 scenarios of CanESM2 (The Second Generation Earth System Model) provided by CCCma (Canadian Center for Climate Modeling and Analysis). The WSC and DRA were estimated using frequency analysis and runs theory. The six reservoirs (Yooshin, Nogok, Kumsung, Songgok, Gapyung, Seoma) were selected considering geographical characteristics and design criteria of reservoir capacity. In case of Seoma reservoir, more than 10 year drought return period (DRP), the variation of the WSC was estimated larger than the others. In case of Yooshin reservior (2~5 DRP) DRC was decreased in 2025s under RCP8.5. These results could be utilized for agricultural reservoirs management and future design criteria considering climate change impacts on paddy irrigation.

기후변화에 따른 홍수기 논의 저류능 변화 분석 (Impact of Climate Change on Paddy Water Storage During Storm Periods)

  • 박근애;박종윤;신형진;박민지;김성준
    • 한국농공학회논문집
    • /
    • 제52권6호
    • /
    • pp.27-37
    • /
    • 2010
  • The effect of potential future climate change on the storage rate of paddy field during storm periods (June - September) was assessed using the daily paddy water balance model. The CCCma CGCM2 data by SRES (special report on emissions scenarios) A2 and B2 scenarios of the IPCC (intergovernmental panel on climate change) was used to assess the future potential climate change. The future weather data for the year 2020s, 2050s and 2080s was downscaled by Change Factor method through bias-correction using 30 years weather data. The future (2020s, 2050s and 2080s) rainfall, storage and irrigation of paddy field, runoff in paddy levee and ponding depth were analyzed for the A2 and B2 climate change scenarios based on a base year (2005). The future irrigation change of paddy field was projected to increase by decrease in rainfall. So, runoff change in paddy levee was decrease slightly, future storage change of paddy was projected to increase.

Assessment of Future Climate Change Impact on DAM Inflow using SLURP Hydrologic Model and CA-Markov Technique

  • Kim, Seong-Joon;Lim, Hyuk-Jin;Park, Geun-Ae;Park, Min-Ji;Kwon, Hyung-Joong
    • 대한원격탐사학회지
    • /
    • 제24권1호
    • /
    • pp.25-33
    • /
    • 2008
  • To investigate the hydrologic impacts of climate changes on dam inflow for Soyanggangdam watershed $(2694.4km^2)$ of northeastern South Korea, SLURP (Semi-distributed Land Use-based Runoff Process) model and the climate change results of CCCma CGCM2 based on SRES A2 and B2 were adopted. By the CA-Markov technique, future land use changes were estimated using the three land cover maps (1985, 1990, 2000) classified by Landsat TM satellite images. NDVI values for 2050 and 2100 land uses were estimated from the relationship of NDVI-Temperature linear regression derived from the observed data (1998-2002). Before the assessment, the SLURP model was calibrated and verified using 4 years (1998-2001) dam inflow data with the Nash-Sutcliffe efficiencies of 0.61 to 0.77. In case of A2 scenario, the dam inflows of 2050 and 2100 decreased 49.7 % and 25.0 % comparing with the dam inflow of 2000, and in case of B2 scenario, the dam inflows of 2050 and 2100 decreased 45.3 % and 53.0 %, respectively. The results showed that the impact of land use change covered 2.3 % to 4.9 % for the dam inflow change.

SWAT 모형을 이용한 기후와 식생 활력도 변화가 수자원에 미치는 영향 평가 (Assessment of Climate and Vegetation Canopy Change Impacts on Water Resources using SWAT Model)

  • 박민지;신형진;박종윤;강부식;김성준
    • 한국농공학회논문집
    • /
    • 제51권5호
    • /
    • pp.25-34
    • /
    • 2009
  • The objective of this study is to evaluate the future potential climate and vegetation canopy change impact on a dam watershed hydrology. A $6,661.5\;km^2$ dam watershed, the part of Han-river basin which has the watershed outlet at Chungju dam was selected. The SWAT model was calibrated and verified using 9 year and another 7 year daily dam inflow data. The Nash-Sutcliffe model efficiency ranged from 0.43 to 0.91. The Canadian Centre for Climate Modelling and Analysis (CCCma) Coupled Global Climate Model3 (CGCM3) data based on Intergovernmental Panel on Climate Change (IPCC) SRES (Special Report Emission Scenarios) B1 scenario was adopted for future climate condition and the data were downscaled by artificial neural network method. The future vegetation canopy condition was predicted by using nonlinear regression between monthly LAI (Leaf Area Index) of each land cover from MODIS satellite image and monthly mean temperature was accomplished. The future watershed mean temperatures of 2100 increased by $2.0^{\circ}C$, and the precipitation increased by 20.4 % based on 2001 data. The vegetation canopy prediction results showed that the 2100 year LAI of deciduous, evergreen and mixed on April increased 57.1 %, 15.5 %, and 62.5% respectively. The 2100 evapotranspiration, dam inflow, soil moisture content and groundwater recharge increased 10.2 %, 38.1 %, 16.6 %, and 118.9 % respectively. The consideration of future vegetation canopy affected up to 3.0%, 1.3%, 4.2%, and 3.6% respectively for each component.

인공신경망모형을 이용한 대규모 대기모형모의결과의 댐유역스케일에서의 지역화기법 (Dam Basin-scale Regionalization of Large-scale Model Output using the Artificial Neural Network)

  • 강부식;이봉기
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2009년도 학술발표회 초록집
    • /
    • pp.179-183
    • /
    • 2009
  • 본 연구에서는 GCM 기후변화 전망 시나리오를 이용하여 유역단위의 기후변화를 추정하였다. 원시 GCM 시나리오를 지역화 시키기 위해서 인공신경망 모형을 사용하였다. GCM에서 모의되는 강수플럭스, 해면기압, 지표면 근처에서의 일 평균온도, 지표면으로부터 발생하는 잠열플럭스 등과 같은 22개의 변수는 인공신경망의 잠재적 예측인자로 사용되었으며, AWS에서 관측된 강수량과 온도는 예측변수로 사용되었다. 원시 GCM 데이터는 CCCma(Canadian Centre for Climate Modeling and Analysis)에서 제공되는 CGCM3.1/T63 20C3M 시나리오를 사용하였으며, 인공신경망 학습과정에서 사용된 기준시나리오(reference scenario)자료의 기간은 1997년부터 2000년까지의 데이터를 사용하였다. 인공신경망을 학습을 통하여 결정된 각 층사이의 가중치를 이용하여 이산화탄소 배출농도를 가정하여 생성된 CGCM3.1/T63 SRES B1 기후변화시나리오(project scenario)를 인공신경망의 입력값으로 하여 미래의 기온과 강수변화를 전망하였다. 신경망의 학습효과를 높이기 위하여 기온과 강수에 대한 평균 및 누적기간을 각각 일단위와 월단위로 설정하였다. 본 연구에서 사용된 인공신경망은 3층 퍼셉트론(다층 퍼셉트론)을 사용하였으며, 학습방법으로는 역전파알고리즘(back-propagation algorithm)을 이용하였다. 민감도분석을 통하여 선택된 예측인자는 소양강댐유역(1011, 1012소유역)에서의 인공신경망 예측인자로 활용되었으며, 2001년부터 2100년까지의 일 평균온도와 일 강수량의 변화경향을 추정하였다. 1011유역, 1012유역에서는 여름철의 온도변화경향이 겨울철에 비하여 높게 나타났다. 일 평균온도의 통계분석 결과 평균예측오차가 가장 적게 나타나는 지역은 1001유역으로 -0.08로 평균예측오차가 가장 적게 나타났으며, 인공신경망기법을 이용하여 스케일 상세화된 일 평균온도와 관측된 일 평균온도가 얼마나 잘 일치하는지를 확인할 수 있는 1012유역에서 CORR이 0.74로 가장 높게 나타났다.

  • PDF

시공간적 Random Cascade 모형을 이용한 한반도지역 기후모의 상세화기법 (Downscaling climate simulation using spatio-temporal random cascade model in Korea region)

  • 권진욱;강부식
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2008년도 학술발표회 논문집
    • /
    • pp.120-124
    • /
    • 2008
  • 본 연구에서는 대기대순환모형(GCM) 모의결과를 활용하여 한반도 지역의 강수량과, 온도에 대하여 분위사상법(Quantile mapping)과 상세화기법(downscaling)을 적용하였다. GCM 모의자료는 캐나다기후센터(CCCma; Canadian Centre for Climate Modeling and Analysis)의 CGCM2 A2, B2시나리오의 $2001{\sim}2100$년 자료를 사용하였으며, GCM 모의결과값과 국내관측값과의 계통적오차(systematic bias)를 보정하기 위하여 분위사상법을 적용하였다. 강수자료의 경우 한반도의 강수특성을 반영하기 위하여 홍수기, 비홍수기로 구분지어 감마분포를 이용하였고, 온도자료의 경우 계절적 특성을 반영하기 위하여 봄/가을, 여름, 겨울로 구분지어 표준정규분포를 이용하여 분위사상법을 적용하였다. 강수자료의 경우 과거($1965{\sim}1989$:25개년)의 31개소의 일평균강우 자료를, 온도자료의 경우 과거($1965{\sim}1989$)의 11개소의 일평균온도 자료를 사용하였다. 이러한 분위사상법의 적용으로 GCM 모의결과값과 관측값사이의 계통적오차를 보정하였으며, 그 결과 강수자료의 홍수기의 경우 모의결과값과 관측값의 차이가 3.79mm/day에서 0.62mm/day로, 비홍수기의 경우 0.24mm/day에서 0.02mm/day로 각각 83%, 92% 보정된것을 확인하였으며, 각각의 확률분포 매개변수를 추출하였다. Random Cascade 모형의 자기유사성 및 무작위 변동성계수를 추정하기 위하여 2002년 8월 6일 00:10부터 8월 9일 24:00까지 432장의 레이더 스캔을 사용하여 스케일분석을 실시하였으며, 모형적용결과 연평균 강우량의 변화는 A2의 경우 797.89mm에서 1297.09mm로 B2의 경우 815.02mm에서 1383.93mm로 나타났다.

  • PDF

미래 기후 식생 토지이용 변화를 고려한 충주댐 기후, 식생, 유역의 수문변동 파악을 위한 SWAT-K 모형의 적용 (Application of SWAT-K Model for the Evaluation of Hydrological Variation of Chungjudam Watershed Considering Future Climate, Vegetation and Land Use Changes)

  • 박민지;신형진;안소라;김성준
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2008년도 학술발표회 논문집
    • /
    • pp.189-193
    • /
    • 2008
  • 본 연구는 충주댐 유역을 대상으로 미래의 기후변화, 그에 따른 식생상태, 그리고 미래의 토지이용 변화를 고려한 상태에서 SWAT-K 모형에 의한 수문순환인자들의 변화가 댐의 유입량에 미치는 영향을 파악하고자 한다. SWAT 모형의 검보정은 6년간($2000{\sim}2006$, 2001년 제외)의 댐유입량 자료를 이용하여 실시하였으며, Nash_Sutcliffe 모형효율은 $0.52{\sim}0.88$의 범위로 검보정되었다. 기후변화 시나리오는 IPCC에서 제공하고 있는 GCM들 중에서 CCCma CGCM2의 A2, B2 시나리오를 이용하였으며, 댐유역의 기후변화를 모의하기 위하여 과거 30년간($1977{\sim}2006$)의 기상자료 통계정보를 기준으로 Change Factor Downscaling 기법을 적용하여 2030년, 2060년, 2090년 전후의 각 30년간의 미래 정보를 재생산하였다. 미래의 식생정보는 7년($2000{\sim}2006$)간의 MODIS 위성 영상에 의한 엽면적 지수를 월단위로 구축하여 엽면적 지수와 평균기온간의 상관회귀식을 도출하여 미래 기후변화에 따른 식생의 활력도를 예측하였다. 미래의 토지이용 변화는 CA-MArkov 기법을 개선, 적용하여 총 9개의 토지이용 항목에 대하여 각 항목별 예측을 실시하였다. 2000년의 기상자료 및 댐유입량을 기준으로 이상의 미래기후, 식생, 토지이용 에측 정보를 적용하여 미래의 댐유입량을 모의한 결과를 분석하였다. 그 결과 강수량 및 온도의 변동이 가장 크게 영향을 주어 유입량의 변화가 모의되었으며, 이에 따른 수문인자의 변동은 2000년 기준으로 증발산량, 토양수분의 변동을 분석하였다. 미래의 수문순환에 가장 큰 영향을 주는 수문인자는 토양수분으로 나타나, 미래에는 산림지역 및 토지이용 개발에 따른 토양수분의 함양량 유지를 위한 유역관리가 중요한 요인이 될 것으로 나타났다.

  • PDF