SLURP 준 분포형 수문모형을 이용하여 예측된 토지이용 자료와 미래 기후변화 시나리오에 의한 기상자료 및 식생지수 정보를 고려한 상태에서 하천유역의 유출에 미치는 영향을 분석하였다. 경안천 경안수위관측소 상류유역($260.4km^2$)을 대상으로 4개년(1999-2002) 동안의 일별 유출량 자료를 바탕으로 모형의 보정(1999-2000)과 검증(2001-2002)을 실시하였다. 토지이용 예측은 1996년, 2000년, 2004년의 Landsat TM 및 ETM+ 위성영상을 이용하여 CA-Markov 기법으로 검증(2004)을 실시한 후, 미래의 토지이용(2030, 2060, 2090)을 예측하였다. 예측된 토지이용은 시간이 경과할수록 산림과 논은 지속적으로 감소하고 도시, 초지, 나지 등은 증가하는 경향을 보였다. 미래의 식생정보 예측을 위하여 NOAA/AVHRR 위성영상으로부터 추출된 월별 NDVI(1998-2002)와 월평균기온간의 선형 회귀식을 도출하여 미래의 식생지수 정보(2030, 2060, 2090)를 추정하였다. IPCC SRES A2, B2 기후변화 시나리오에 대한 CCCma CGCM2 모의결과 값(2030s, 2060s, 2090s)을 Stochastic Spatio-Temporal Random Cascade Model(SST-RCM) 기법을 이용하여 downscaling 한 뒤 하천유출의 변화를 분석한 결과, 기후변화에 따른 하천유출율은 1999-2002년의 59%에 비해 미래에는 13%~34%로 감소하는 것으로 모의되었고, 반면에 토지이용의 변화에 대한 유출율은 0.1%~1% 증가하였다.
기후변화가 수자원에 미치는 영향을 평가하는데 있어서 주로 기후모형인 Global Climate Model (GCM)이 사용되고 있다. 그러나 이러한 기후모형의 공간적 해상도는 $3^{\circ}{\sim}4^{\circ}$ 정도로 한반도의 경우 바다로 묘사되기도 한다. 따라서 GCM을 이용해서 기후변화가 유역단위 수자원에 미치는 영향을 평가하기 위해서는 일반적으로 축소기법이 사용되고 있다. 현재까지 다양한 축소기법이 개발되었으며, 대표적인 모형으로는 SDSM(Statistical Down-Scaling Model)과 LARS-WG(The Long Ashton Research Station Weather Generator)이 있다. 이에 본 연구에서는 SDSM, LARS-WG와 함께 최근에 축소기법으로 사용되고 있는 인공신경망 기법을 이용해서 CCCMA(Canadian Centre for Climate Modeling and Analysis)에서 일 단위로 모의한 CGCM3 A2 시나리오를 기반으로 우포늪의 강우 및 온도시나리오를 구축하였다. 대상 지점인 우포늪은 경상남도 창녕군 우포늪(위도 $35^{\circ}$33', 경도 $128^{\circ}$25')에 위치하고 있으며, 모의 기간은 CASE1의 경우 현재, CASE2는 2050$^{\sim}$ 2080년, CASE3는 2080년$^{\sim}$2100년으로 각각 구분하여 축소기법을 적용하였다. 축소결과 축소기법에 따라 일정정도 차이를 보이기는 하였으나 강우와 온도 모두 증가하게 됨을 확인하였다.
본 연구에서는 한강유역 내 관측기간이 충분한 기상청 지상관측소 10개소를 선정하고 CCCma(Canadian Century for Climate modeling and analysis)에서 제공하는 자료에 대한 인공신경망기법 상세화 적용을 실시하였다. 인공신경망의 학습을 위해 CGCM3.1/T63 20C3M시나리오(reference scenario)의 22개 2D변수 중 물리적으로 민감도가 높다고 판단되는 GCM_Prec, huss, ps를 입력변수로 선정하였으며 인공신경망 학습기간은 1991년~1995년, 검증기간은 1996년~2000년, 예측기간은 2011년~2100년으로 A1B, A2 B1 시나리오 등 다양한 기후변화 시나리오를 통해 예측band를 제시하고자 하였다. 하지만 공간상관을 고려하기 위하여 각 관측소에 대하여 인공신경망 학습을 하는 경우 관측소간 spatial correlation 및 spatial cluster구현이 어렵기 때문에 Spatial Rectangular Pulse모형을 이용하고자 하였으나, 강수면적에 대한 scale의 결정이 어렵다는 단점을 확인 하고 본 연구에서는 Random Cascade 모형을 이용하여 ${\beta}$를 통한 강수면적 scale(rainy area fraction)을 결정하고자 하였다. Random Cascade모형의 기법은 격자단위의 downscaling기법으로 강수대의 공간적 형상을 재현하며 스케일에 비종속적인(scale-invariant)프랙탈 특성을 이용하여 매개변수를 최소화 할 수 있는 장점을 가진 기법으로 한강유역 1Km내외 강우장을 만들어 topographic effect를 첨가하고자 한다.
Agriculture is affected directly by climate conditions and changes, and it is necessary to understand the impact of climate change on agricultural reservoirs which are the main water resources for paddy fields in Korea. This study aimed to evaluate the impact of climate change on the anti-drought capacity including water supply capability (WSC) and drought response ability (DRA) of agricultural reservoirs based on RCP (Representative Concentration Pathway) 4.5 and 8.5 scenarios of CanESM2 (The Second Generation Earth System Model) provided by CCCma (Canadian Center for Climate Modeling and Analysis). The WSC and DRA were estimated using frequency analysis and runs theory. The six reservoirs (Yooshin, Nogok, Kumsung, Songgok, Gapyung, Seoma) were selected considering geographical characteristics and design criteria of reservoir capacity. In case of Seoma reservoir, more than 10 year drought return period (DRP), the variation of the WSC was estimated larger than the others. In case of Yooshin reservior (2~5 DRP) DRC was decreased in 2025s under RCP8.5. These results could be utilized for agricultural reservoirs management and future design criteria considering climate change impacts on paddy irrigation.
The effect of potential future climate change on the storage rate of paddy field during storm periods (June - September) was assessed using the daily paddy water balance model. The CCCma CGCM2 data by SRES (special report on emissions scenarios) A2 and B2 scenarios of the IPCC (intergovernmental panel on climate change) was used to assess the future potential climate change. The future weather data for the year 2020s, 2050s and 2080s was downscaled by Change Factor method through bias-correction using 30 years weather data. The future (2020s, 2050s and 2080s) rainfall, storage and irrigation of paddy field, runoff in paddy levee and ponding depth were analyzed for the A2 and B2 climate change scenarios based on a base year (2005). The future irrigation change of paddy field was projected to increase by decrease in rainfall. So, runoff change in paddy levee was decrease slightly, future storage change of paddy was projected to increase.
Kim, Seong-Joon;Lim, Hyuk-Jin;Park, Geun-Ae;Park, Min-Ji;Kwon, Hyung-Joong
대한원격탐사학회지
/
제24권1호
/
pp.25-33
/
2008
To investigate the hydrologic impacts of climate changes on dam inflow for Soyanggangdam watershed $(2694.4km^2)$ of northeastern South Korea, SLURP (Semi-distributed Land Use-based Runoff Process) model and the climate change results of CCCma CGCM2 based on SRES A2 and B2 were adopted. By the CA-Markov technique, future land use changes were estimated using the three land cover maps (1985, 1990, 2000) classified by Landsat TM satellite images. NDVI values for 2050 and 2100 land uses were estimated from the relationship of NDVI-Temperature linear regression derived from the observed data (1998-2002). Before the assessment, the SLURP model was calibrated and verified using 4 years (1998-2001) dam inflow data with the Nash-Sutcliffe efficiencies of 0.61 to 0.77. In case of A2 scenario, the dam inflows of 2050 and 2100 decreased 49.7 % and 25.0 % comparing with the dam inflow of 2000, and in case of B2 scenario, the dam inflows of 2050 and 2100 decreased 45.3 % and 53.0 %, respectively. The results showed that the impact of land use change covered 2.3 % to 4.9 % for the dam inflow change.
The objective of this study is to evaluate the future potential climate and vegetation canopy change impact on a dam watershed hydrology. A $6,661.5\;km^2$ dam watershed, the part of Han-river basin which has the watershed outlet at Chungju dam was selected. The SWAT model was calibrated and verified using 9 year and another 7 year daily dam inflow data. The Nash-Sutcliffe model efficiency ranged from 0.43 to 0.91. The Canadian Centre for Climate Modelling and Analysis (CCCma) Coupled Global Climate Model3 (CGCM3) data based on Intergovernmental Panel on Climate Change (IPCC) SRES (Special Report Emission Scenarios) B1 scenario was adopted for future climate condition and the data were downscaled by artificial neural network method. The future vegetation canopy condition was predicted by using nonlinear regression between monthly LAI (Leaf Area Index) of each land cover from MODIS satellite image and monthly mean temperature was accomplished. The future watershed mean temperatures of 2100 increased by $2.0^{\circ}C$, and the precipitation increased by 20.4 % based on 2001 data. The vegetation canopy prediction results showed that the 2100 year LAI of deciduous, evergreen and mixed on April increased 57.1 %, 15.5 %, and 62.5% respectively. The 2100 evapotranspiration, dam inflow, soil moisture content and groundwater recharge increased 10.2 %, 38.1 %, 16.6 %, and 118.9 % respectively. The consideration of future vegetation canopy affected up to 3.0%, 1.3%, 4.2%, and 3.6% respectively for each component.
본 연구에서는 GCM 기후변화 전망 시나리오를 이용하여 유역단위의 기후변화를 추정하였다. 원시 GCM 시나리오를 지역화 시키기 위해서 인공신경망 모형을 사용하였다. GCM에서 모의되는 강수플럭스, 해면기압, 지표면 근처에서의 일 평균온도, 지표면으로부터 발생하는 잠열플럭스 등과 같은 22개의 변수는 인공신경망의 잠재적 예측인자로 사용되었으며, AWS에서 관측된 강수량과 온도는 예측변수로 사용되었다. 원시 GCM 데이터는 CCCma(Canadian Centre for Climate Modeling and Analysis)에서 제공되는 CGCM3.1/T63 20C3M 시나리오를 사용하였으며, 인공신경망 학습과정에서 사용된 기준시나리오(reference scenario)자료의 기간은 1997년부터 2000년까지의 데이터를 사용하였다. 인공신경망을 학습을 통하여 결정된 각 층사이의 가중치를 이용하여 이산화탄소 배출농도를 가정하여 생성된 CGCM3.1/T63 SRES B1 기후변화시나리오(project scenario)를 인공신경망의 입력값으로 하여 미래의 기온과 강수변화를 전망하였다. 신경망의 학습효과를 높이기 위하여 기온과 강수에 대한 평균 및 누적기간을 각각 일단위와 월단위로 설정하였다. 본 연구에서 사용된 인공신경망은 3층 퍼셉트론(다층 퍼셉트론)을 사용하였으며, 학습방법으로는 역전파알고리즘(back-propagation algorithm)을 이용하였다. 민감도분석을 통하여 선택된 예측인자는 소양강댐유역(1011, 1012소유역)에서의 인공신경망 예측인자로 활용되었으며, 2001년부터 2100년까지의 일 평균온도와 일 강수량의 변화경향을 추정하였다. 1011유역, 1012유역에서는 여름철의 온도변화경향이 겨울철에 비하여 높게 나타났다. 일 평균온도의 통계분석 결과 평균예측오차가 가장 적게 나타나는 지역은 1001유역으로 -0.08로 평균예측오차가 가장 적게 나타났으며, 인공신경망기법을 이용하여 스케일 상세화된 일 평균온도와 관측된 일 평균온도가 얼마나 잘 일치하는지를 확인할 수 있는 1012유역에서 CORR이 0.74로 가장 높게 나타났다.
본 연구에서는 대기대순환모형(GCM) 모의결과를 활용하여 한반도 지역의 강수량과, 온도에 대하여 분위사상법(Quantile mapping)과 상세화기법(downscaling)을 적용하였다. GCM 모의자료는 캐나다기후센터(CCCma; Canadian Centre for Climate Modeling and Analysis)의 CGCM2 A2, B2시나리오의 $2001{\sim}2100$년 자료를 사용하였으며, GCM 모의결과값과 국내관측값과의 계통적오차(systematic bias)를 보정하기 위하여 분위사상법을 적용하였다. 강수자료의 경우 한반도의 강수특성을 반영하기 위하여 홍수기, 비홍수기로 구분지어 감마분포를 이용하였고, 온도자료의 경우 계절적 특성을 반영하기 위하여 봄/가을, 여름, 겨울로 구분지어 표준정규분포를 이용하여 분위사상법을 적용하였다. 강수자료의 경우 과거($1965{\sim}1989$:25개년)의 31개소의 일평균강우 자료를, 온도자료의 경우 과거($1965{\sim}1989$)의 11개소의 일평균온도 자료를 사용하였다. 이러한 분위사상법의 적용으로 GCM 모의결과값과 관측값사이의 계통적오차를 보정하였으며, 그 결과 강수자료의 홍수기의 경우 모의결과값과 관측값의 차이가 3.79mm/day에서 0.62mm/day로, 비홍수기의 경우 0.24mm/day에서 0.02mm/day로 각각 83%, 92% 보정된것을 확인하였으며, 각각의 확률분포 매개변수를 추출하였다. Random Cascade 모형의 자기유사성 및 무작위 변동성계수를 추정하기 위하여 2002년 8월 6일 00:10부터 8월 9일 24:00까지 432장의 레이더 스캔을 사용하여 스케일분석을 실시하였으며, 모형적용결과 연평균 강우량의 변화는 A2의 경우 797.89mm에서 1297.09mm로 B2의 경우 815.02mm에서 1383.93mm로 나타났다.
본 연구는 충주댐 유역을 대상으로 미래의 기후변화, 그에 따른 식생상태, 그리고 미래의 토지이용 변화를 고려한 상태에서 SWAT-K 모형에 의한 수문순환인자들의 변화가 댐의 유입량에 미치는 영향을 파악하고자 한다. SWAT 모형의 검보정은 6년간($2000{\sim}2006$, 2001년 제외)의 댐유입량 자료를 이용하여 실시하였으며, Nash_Sutcliffe 모형효율은 $0.52{\sim}0.88$의 범위로 검보정되었다. 기후변화 시나리오는 IPCC에서 제공하고 있는 GCM들 중에서 CCCma CGCM2의 A2, B2 시나리오를 이용하였으며, 댐유역의 기후변화를 모의하기 위하여 과거 30년간($1977{\sim}2006$)의 기상자료 통계정보를 기준으로 Change Factor Downscaling 기법을 적용하여 2030년, 2060년, 2090년 전후의 각 30년간의 미래 정보를 재생산하였다. 미래의 식생정보는 7년($2000{\sim}2006$)간의 MODIS 위성 영상에 의한 엽면적 지수를 월단위로 구축하여 엽면적 지수와 평균기온간의 상관회귀식을 도출하여 미래 기후변화에 따른 식생의 활력도를 예측하였다. 미래의 토지이용 변화는 CA-MArkov 기법을 개선, 적용하여 총 9개의 토지이용 항목에 대하여 각 항목별 예측을 실시하였다. 2000년의 기상자료 및 댐유입량을 기준으로 이상의 미래기후, 식생, 토지이용 에측 정보를 적용하여 미래의 댐유입량을 모의한 결과를 분석하였다. 그 결과 강수량 및 온도의 변동이 가장 크게 영향을 주어 유입량의 변화가 모의되었으며, 이에 따른 수문인자의 변동은 2000년 기준으로 증발산량, 토양수분의 변동을 분석하였다. 미래의 수문순환에 가장 큰 영향을 주는 수문인자는 토양수분으로 나타나, 미래에는 산림지역 및 토지이용 개발에 따른 토양수분의 함양량 유지를 위한 유역관리가 중요한 요인이 될 것으로 나타났다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.