• Title/Summary/Keyword: CCC(Capacitor Commutated Converter)

Search Result 4, Processing Time 0.023 seconds

A Study on CCC(Capacitor Commutated Converter) and CSCC(Controlled Series Capacitor Converter) for HVDC System

  • Kim Chan-Ki;Kho Bong-Un;Lee Jong-Min;Chae Young-Mu
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.523-528
    • /
    • 2001
  • This paper deals with two non-conventional HVDC system, that are, the Capacitor Commutated Converter (CCC) in which series capacitors are included between the converter transformer and the valves, and the Controller Series Capacitor Converter (CSCC), based on more conventional topology, in which series capacitors are inserted between the AC filter bus and the AC network. The simulation waveforms show that if these compare to conventional HVDC, these HVDC systems have many advantages in steady-state and transient performance.

  • PDF

A Study on Dynamic Stability of HVDC System Type which may be Applied the Jeju AC Network (제주계통에 적용 가능한 유형별 HVDC 시스템의 동적 안정도 연구)

  • Kwon, Young-Hun;Kim, Yong-Hak;Kim, Chan-Ki;Choy, Young-Do
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.13 no.4
    • /
    • pp.270-277
    • /
    • 2008
  • Capacitor Commutated Converter HVDC system is required the small reactive power. It has the advantage of an application to the week grid because the firing angle ${\alpha}$ can be increased to a value well beyond $180^{\circ}$. In this paper, The three HVDC converter arrangements which are the CCC(Capacitor Commutated Converter) and the CSCC(Controlled Series Capacitor Convertor) and Conventional Converter are compared the dynamic character. and it find that the CCC HVDC is operating with more reliability. The simulation was conducted to the PSCAD/EMTDC.

Controller of the Capacitor Commutated Converter for Hvdc

  • Tsubota, Shinji;Funaki, Tsuyoshi;Matsuura, Kenji
    • Proceedings of the KIPE Conference
    • /
    • 1998.10a
    • /
    • pp.914-919
    • /
    • 1998
  • A Capacitor Commutated Converter (CCC) has less difficulty of commutation failure in comparison to the conventional line commutated converter. This paper proposes the Ar1R control of the CCC in the inverter operation, which deserves as the Ar1R of the conventional converter. The CCC can be operated in high power factor area by using the proposing Ar1R control. The voltage stability at an AC bus connected the CCC inverter is investigated and estimated its ability of preventing the AC voltage collapse. To estimate the voltage stability, this paper developed the simplified converter mathematical model and led the VSF index. The results shows that the AC voltage stability is guaranteed and enables the interconnection to an weak AC system, when compensation factor of the compensation capacitor is higher than 200%.

  • PDF

A Study on the Performance Enhancement of HVDC System Using Hybrid Filter and Energy Recovery Filter (11차/13차 고조파를 동시에 제거하는 Single Tuned 필터)

  • Kim C.K.;Yang B.M.;Jeong G.J.;Ahan J.S.
    • Proceedings of the KIPE Conference
    • /
    • 2003.07b
    • /
    • pp.717-721
    • /
    • 2003
  • Two non-conventional HVDC converter arrangements are compared. These include the Capacitor Commutated Converter (CCC) in which series capacitors are included between the converter transformer and the valves, and the Controller Series Capacitor Converter (CSCC), based on more conventional topology, in which series capacitors are inserted between the AC filter bus and the AC network. Results show that both options have comparable steady state and transient performance. Danger of ferroresonance with the CSCC option is eliminated by controlling the amount of series compensation. The dynamic performance simulations is peformed by PSCAD/EMTDC

  • PDF