• Title/Summary/Keyword: CCAAT/enhancer-binding proteins-${\alpha}$

Search Result 46, Processing Time 0.032 seconds

Red ginseng-derived saponin fraction inhibits lipid accumulation and reactive oxygen species production by activating nuclear factor (erythroid-derived 2)-like 2 (Nrf2)/Kelch-like ECH-associated protein 1 (Keap1) pathway (홍삼 사포닌 분획의 Nrf2 Keap1 신호전달체계 조절을 통한 지방축적 및 활성산소종 억제효과)

  • Kim, Chae-Young;Kang, Bobin;Hwang, Jisu;Choi, Hyeon-Son
    • Korean Journal of Food Science and Technology
    • /
    • v.50 no.6
    • /
    • pp.688-696
    • /
    • 2018
  • This study aimed to investigate the effects of red ginseng-derived saponin fraction (SF) on lipid accumulation, reactive oxygen species (ROS) production, and nuclear factor (erythroid-derived 2)-like 2 (Nrf2)/Kelch-like ECH-associated protein 1 (Keap1) signaling during adipocyte differentiation. SF effectively inhibited lipid accumulation, with the downregulation of adipogenic factors such as peroxisome proliferator-activated receptor gamma ($PPAR{\gamma}$) and CCAAT/enhancer-binding protein alpha ($C/EBP{\alpha}$). A high dose of SF decreased the protein levels of $PPAR{\gamma}$ and $C/EBP{\alpha}$ by over 90% compared to the control. SF-mediated downregulation of adipogenic factors was due to the regulation of early adipogenic factors including $C/EBP{\beta}$ and $Kr{\ddot{u}}ppel$-like Factor 2 (KLF2). In addition, SF ($200{\mu}g/mg$) decreased intracellular ROS generation by 40% during adipocyte differentiation. However, the SF significantly upregulated Nrf2 and its target proteins, hemoxygenase-1 (HO-1) and NADPH dehydrogenase quinone 1 (NQO1). Furthermore, SF ($200{\mu}g/mg$) promoted the nuclear translocation of Nrf2. The SF-mediated reduction of lipid accumulation was associated with the regulation of the Nrf2/Keap1 pathway.

Effects of Geranium wilfordii Maxim. Ethanol Extract of on Adipogenesis and Lipogenesis (세잎쥐손이풀(Geranium wilfordii Maxim.) 에탄올 추출물이 지방생성 및 지방합성에 미치는 영향)

  • Tae Woo Kim;Kyoung Kon Kim;Jae Cheon Im;Hye Rim Lee;Jung Min Kim
    • Korean Journal of Plant Resources
    • /
    • v.37 no.4
    • /
    • pp.307-313
    • /
    • 2024
  • In this study, the anti-obesity effect of Geranium wilfordii Maxim. extract was studied using 3T3-L1 cells. Geranium wilfordii Maxim. was extracted with water (NG-GT-T1L), 10% ethanol (NG-GT-T2L), 30% ethanol (NG-GT-T3L), 50% ethanol (NG-GT-T4L), 70% ethanol (NG-GT-T5L), and the effects on cell viability, lipid accumulation, triglyceride content, and protein expression in 3T3-L1 cells were confirmed. It was confirmed that NG-GT-T3L extract was superior to other extract conditions in reducing lipid accumulation and triglyceride content in the concentration range that did not show cytotoxicity. In addition, it was confirmed to suppress adipogenesis and lipogenesis by reducing the expression of peroxisome proliferator-activated receptor-gamma (PPARγ) and CCAAT/enhancer binding protein-α(C/EBPα) proteins that regulate adipogenesis, decreasing the expression of fatty acid synthetase (FAS) and stearoyl CoA desaturase-1 (SCD-1) proteins that regulate lipogenesis, and increasing the expression of AMP-activated protein kinase (AMPK) protein. From these research results, Geranium wilfordii Maxim. NG-GT-T3L extract is believed to have anti-obesity reduction effects through suppressing lipid accumulation and triglyceride accumulation and regulating adipogenesis and lipogenesis-related proteins.

Defatted Grape Seed Extracts Suppress Adipogenesis in 3T3-L1 Preadipocytes (포도씨 탈지박 추출물 처리가 3T3-L1 Preadipocyte 내 지방 생성에 미치는 영향)

  • Cho, Young-Min;Lee, Seon-Mi;Kim, Young-Hwa;Jeon, Geon-Uk;Sung, Jee-Hy;Jeong, Heon-Sang;Lee, Jun-Soo
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.39 no.6
    • /
    • pp.927-931
    • /
    • 2010
  • The objective of this study was to evaluate the effect of defatted grape seed extract (DGSE) on adipocyte differentiation in 3T3-L1 preadipocytes. DGSE at 100 ${\mu}g$/mL significantly suppressed lipid accumulation and glycerol-3-phosphate dehydrogenase activity in hormonally stimulated adipocytes, an indicator of adipocyte differentiation. In order to understand the anti-adipogenic effects of DGSE, the changes in the expression of several adipogenic transcription factors including peroxisome proliferator-activated receptor (PPAR) $\gamma$, CCAAT/enhancer-binding protein (C/EBP) $\alpha$ and $\beta$ were investigated using immunoblotting. DGSE suppressed the expression of PPAR$\gamma$, C/EBP$\alpha$, and C/EBP$\beta$ proteins compared with control adipocytes in a dose-dependent manner. This results indicated that DGSE may alter fat mass by directly affecting adipogensis in maturing preadipocytes and thus may have applications for the treatment of obesity.

Anti-obesity Effect of Salsola collina Ethanol Extract (솔장다리 추출물의 항비만 효과)

  • Jin, Kyong-Suk;Lee, Su Hyeon;Kwon, Hyun Ju;Kim, Byung Woo
    • Journal of Life Science
    • /
    • v.27 no.8
    • /
    • pp.888-895
    • /
    • 2017
  • Salsola collina (S. collina) is an annual plant widely distributed in drought and semi-drought areas, which has been used for a long time as a kind of folk remedy in traditional Chinese medicine for the treatment of hypertension. Previously, the anti-oxidative and anti-cancer activities of S. collina were elucidated in our research group. In this study, the anti-obesity activities of S. collina ethanol extract (SCEE) were evaluated using a pancreatic lipase enzyme inhibition assay and cell culture model. The results showed that SCEE effectively suppressed pancreatic lipase enzyme activity in a dose-dependent manner. Furthermore, SCEE significantly suppressed adipocyte differentiation, lipid accumulation, and triglyceride (TG) content, and triggered lipolysis on insulin, dexamethasone, and 3-isobutyl-l-methylxanthine-treated 3T3-L1 preadipocytes in a dose-dependent manner without cytotoxicity. Its anti-obesity effect was modulated by cytidine-cytidine-adenosine-adenosine-thymidine (CCAAT)/enhancer binding proteins ${\alpha}$ ($C/EBP{\alpha}$), $C/EBP{\beta}$, and the peroxisome proliferator-activated receptor ${\gamma}$ ($PPAR{\gamma}$) gene, as well as protein expressions. Taken together, these results offer the important new insight that S. collina possesses anti-obesity properties, such as pancreatic lipase inhibition and anti-adipogenic and lipolysis effects through the modulation of their upstream signaling pathway. It could become a promising source in the field of nutraceuticals, and the identification of active compounds that confer the biological activities of SCEE may be needed.

Anti-Oxidative and Anti-Obesity Activities of Tetrapanax papyriferus and Siegesbeckia pubescens Extracts and their Synergistic Anti-Obesity Effects (통초.희렴 추출물의 항산화.항비만 활성 및 혼합물의 항비만 시너지 효과)

  • Park, Jung Ae;Jin, Kyong-Suk;Lee, Ji Young;Kwon, Hyun Ju;Kim, Byung Woo
    • Microbiology and Biotechnology Letters
    • /
    • v.41 no.3
    • /
    • pp.341-349
    • /
    • 2013
  • In this study, the anti-oxidative and anti-obesity activities of two medicinal herb extracts, Tetrapanax papyriferus (TP) and Siegesbeckia pubescens (SP), were evaluated using DPPH radical scavenging activity assay, lipase enzyme inhibition assay, and the cell culture model system. Both methanol extracts of TP and SP showed DPPH radical scavenging activities dose-dependently, and the $IC_{50}$ of DPPH radical scavenging activities of the two medicinal herbs were 65.23 and 47.79 ${\mu}g/ml$, respectively. Furthermore, both extracts suppressed effectively lipase enzyme activity dose-dependently. Moreover, TP and SP extracts significantly suppressed adipocyte differentiation, lipid accumulation, triglyceride (TG) contents on 3T3-L1 preadipocytes in a dose-dependent manner without cytotoxicity. Their anti-obesity effect was modulated by cytidine-cytidine-adenosine-adenosine-thymidine (CCAAT)/enhancer binding proteins ${\alpha}$ ($C/EBP{\alpha}$), $C/EBP{\beta}$ and peroxisome proliferator-activated receptor ${\gamma}$ ($PPAR{\gamma}$) gene and protein expressions. Furthermore, TP and SP possessed a synergistic effect on anti-obesity activity. The identification of the active compounds that confer the anti-obesity activity of TP and SP might be needed.

Anti-Oxidative and Anti-Obesity Effects of Amomum Cardamomum L. Extract (백두구 추출물의 항산화 및 항비만 효과)

  • Park, Jung Ae;Jin, Kyong-Suk;Lee, Ji Young;Kwon, Hyun Ju;Kim, Byung Woo
    • Microbiology and Biotechnology Letters
    • /
    • v.42 no.3
    • /
    • pp.249-257
    • /
    • 2014
  • In this study, the anti-oxidative and anti-obesity activities of Amomum cardamomum L. methanol extract (ACME) were evaluated using DPPH radical scavenging activity assay, pancreatic lipase enzyme inhibition assay, and the cell culture model system. ACME exhibited DPPH radical scavenging activities dose-dependently, with $IC_{50}$ of DPPH radical scavenging activities of ACME being $25.15{\mu}g/ml$. Furthermore, ACME effectively suppressed pancreatic lipase enzyme activity dose-dependently. ACME also significantly suppressed adipocyte differentiation, lipid accumulation, triglyceride (TG) contents, and triggered lipolysis activity on 3T3-L1 preadipocytes in a dose-dependent manner, without cytotoxicity. Their anti-obesity effect was modulated by the cytidine-cytidine-adenosine-adenosine-thymidine (CCAAT)/enhancer binding proteins ${\alpha}$ ($C/EBP{\alpha}$), $C/EBP{\beta}$ and the peroxisome proliferator-activated receptor ${\gamma}$ ($PPAR{\gamma}$) gene and protein expressions. Taken together, these results provide an important new insight that A. cardamomum L. possesses anti-oxidative and anti-obesity activities such as pancreatic lipase inhibition, anti-adipogenic, and lipolysis effects. There is therefore potential for its use as a promising component in the field of nutraceuticals and the identification of the active compounds that confer the anti-oxidative and anti-obesity activities of ACME might be an appropriate next step.

Anti-Obesity Activity of Euptelea Pleiosperma Ethanol Extract (Euptelea pleiosperma 에탄올 추출물의 항비만 활성)

  • Park, Jung Ae;Jin, Kyong-Suk;Kwon, Hyun Ju;Kim, Byung Woo
    • Microbiology and Biotechnology Letters
    • /
    • v.43 no.4
    • /
    • pp.336-342
    • /
    • 2015
  • Previously, Euptelea pleiosperma was identified as one of the useful sources containing anti-oxidative and anti-inflammatory activities for the first time in our research group. In this study, anti-obesity effect of E. pleiosperma ethanol extract (EPEE) was evaluated by using a pancreatic lipase enzyme inhibition assay and a cell culture model system. EPEE suppressed effectively pancreatic lipase enzyme activity dose dependently. Furthermore, EPEE significantly suppressed adipocyte differentiation, lipid accumulation, triglyceride contents, and triggered lipolysis activity on 3T3-L1 preadipocytes in a dose-dependent manner without cytotoxicity. Anti-adipogenic effect of EPEE was modulated by cytidine-cytidine-adenosine-adenosine-thymidine (CCAAT)/enhancer binding proteins ${\alpha}(C/EBP{\alpha})$, $C/EBP{\beta}$ and peroxisome proliferator-activated receptor ${\gamma}(PPAR{\gamma})$ gene and protein expressions. Taken together, these results provide the important new insight that E. pleiosperma possesses anti-obesity activities such as pancreatic lipase inhibition, anti-adipogenic, and lipolysis effects. It might be utilized as promising sources in the fields of nutraceuticals. The identification of active compounds that confer anti-obesity activity of EPEE might be needed.

Molecular and functional characterization of the adiponectin (AdipoQ) gene in goat skeletal muscle satellite cells

  • Wang, Linjie;Xue, Ke;Wang, Yan;Niu, Lili;Li, Li;Zhong, Tao;Guo, Jiazhong;Feng, Jing;Song, Tianzeng;Zhang, Hongping
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.8
    • /
    • pp.1088-1097
    • /
    • 2018
  • Objective: It is commonly accepted that adiponectin binds to its two receptors to regulate fatty acid metabolism in adipocytes. To better understand their functions in the regulation of intramuscular adipogenesis in goats, we cloned the three genes (adiponectin [AdipoQ], adiponectin receptor 1 [AdipoR1], and AdipoR2) encoding these proteins and detected their mRNA distribution in different tissues. We also determined the role of AdipoQ in the adipogenic differentiation of goat skeletal muscle satellite cells (SMSCs). Methods: SMSCs were isolated using 1 mg/mL Pronase E from the longissimus dorsi muscles of 3-day-old female Nanjiang brown goats. Adipogenic differentiation was induced in satellite cells by transferring the cells to Dulbecco's modified Eagle's medium supplemented with an isobutylmethylxanthine, dexamethasone and insulin cocktail. The pEGFP-N1-AD plasmid was transfected into SMSCs using Lipofectamine 2000. Expression of adiponectin in tissues and SMSCs was detected by quantitative polymerase chain reaction and immunocytochemical staining. Results: The three genes were predominantly expressed in adipose and skeletal muscle tissues. According to fluorescence and immunocytochemical analyses, adiponectin protein expression was only observed in the cytoplasm, suggesting that adiponectin is localized to the cytoplasm of goat SMSCs. In SMSCs overexpressing the AdipoQ gene, adiponectin promoted SMSC differentiation into adipocytes and significantly (p<0.05) up-regulated expression of AdipoR2, acetyl-CoA carboxylase, fatty-acid synthase, and sterol regulatory element-binding protein-1, though expression of CCAAT/enhancer-binding $protein-{\alpha}$, peroxisome proliferator-activated receptor ${\gamma}$, and AdipoR1 did not change significantly. Conclusion: Adiponectin induced SMSC differentiation into adipocytes, indicating that adiponectin may promote intramuscular adipogenesis in goat SMSC.

The Anti-Obesity Effect of Smilax china Extract (토복령 추출물의 항비만 활성)

  • Park, Jung Ae;Jin, Kyong-Suk;Kwon, Hyun Ju;Kim, Byung Woo
    • Microbiology and Biotechnology Letters
    • /
    • v.42 no.4
    • /
    • pp.354-360
    • /
    • 2014
  • In this study, the anti-obesity activity of Smilax china methanol extract (SCME) was evaluated using a pancreatic lipase enzyme inhibition assay, and a cell culture model system. Results indicated that, SCME effectively inhibited pancreatic lipase enzyme activity in a dose-dependent manner. Furthermore, SCME significantly suppressed insulin, dexamethasone, 3-isobutyl-1-methylxanthine-induced adipocyte differentiation, lipid accumulation, and triglyceride contents on 3T3-L1 preadipocytes, in a dose-dependent manner. The anti-adipogenic effect was modulated by cytidine-cytidine-adenosine-adenosine-thymidine (CCAAT)/enhancer binding proteins (C/EBP) ${\alpha}$, $C/EBP{\beta}$, and the peroxisome proliferator-activated receptor ${\gamma}$ gene and protein expressions. Moreover, SCME triggered lipolysis effects dose-dependently on adipocyte. Taken together, these results provide an important new insight into SCME, indicating that it possesses anti-obesity activity through pancreatic lipase inhibition, anti-adipogenic and lipolysis effects. SCME may therefore be utilized as a promising source in the field of nutraceuticals. The identification of active compounds that confer the anti-obesity activities of SCME may be a logical next step.

Effects of Ethanol Extract of Sargassum horneri on Adipocyte Differentiation and Adipogenesis in 3T3-L1 Preadipocytes (괭생이모자반 에탄올 추출물이 3T3-L1 지방전구세포의 분화 및 adipogenesis에 미치는 영향)

  • Kwon, Da Hye;Choi, Yung Hyun;Kim, Byung Woo;Hwang, Hye Jin
    • Journal of Life Science
    • /
    • v.29 no.2
    • /
    • pp.209-214
    • /
    • 2019
  • Sargassum horneri (Turner) C. Agardh is a marine brown algae widely distributed in the North Pacific Ocean. It is known for its anti-inflammatory and anti-atopic effects. In this study, we determined the effects of ethanol extract of Sargassum horneri (Turner) C. Agardh (EESH) on anti-obesity activities in 3T3-L1 preadipocytes. Our results indicated that treatment with EESH decreased the differentiation of 3T3-L1 preadipocytes in a dose-dependent manner, as confirmed by a decrease in lipid droplet content observed by oil red O staining. The concentrations of cellular triglycerides were also reduced in 3T3-L1 cells after treatment with EESH. Triglyceride content was inhibited by 13%, 16%, and 23% after treatment with 250, 500, and $1,000{\mu}g/ml$ of EESH in 3T3-L1 cells, respectively. Western blotting analysis showed that EESH suppressed adipogenic transcription factor expression in a dose dependent manner. Specifically, it suppressed cytidine-cytidine-adinosine-adenosine-thymidine (CCAAT) /enhancer binding proteins $(C/EBP){\alpha}$, $C/EBP{\beta}$ and peroxisome proliferator-activated receptor $(PPAR){\gamma}$. This indicated that EESH could control the expression of adipogenic transcription factors and inhibit the differentiation of adipocytes. Taken together, these findings demonstrated that EESH showed anti-obesity effects and could have potential uses in the field of nutraceuticals.