• Title/Summary/Keyword: CBN grinding tool

Search Result 19, Processing Time 0.02 seconds

The Change of Porosity During the Fabrication of Vitreous Bonded CBN Tools (유리질 결합 CBN공구 제조시 기공량 변화)

  • Yang, Jin
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.9
    • /
    • pp.988-994
    • /
    • 1998
  • In the manufacturing of vitreous bonded CBN tool the porosity change associated with various processing conditions, I. e. the sintering temperature and the size and the amount of abrasive grits was observed. In the case of sintering of vitreous bond material only the specimen density reached the maximum at 950$^{\circ}C$ and then the total porosity was increased slightly with the temperature above 950$^{\circ}C$. In the sintering of a-brasive grits and the vitreous bond material together a marked increase in the total porosity was found with the temperature above 950$^{\circ}C$ Reducing the grit size at the constant volume fraction of abrasive grits showed an increase in the total porosity at whole sintering temperature. On the contrary. it was observed that increasing the volume fraction of abrasive grits with a same size showed the increased open porosity simultaneously with decreased closed porosity at whole sintering temperature.

  • PDF

A Study on the Internal Grinding with High Quality Using Interval Type Electrolytic Dressing Method (전해 드레싱을 이용한 고품의 내면 연삭 가공에 관한연구)

  • 강재훈
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.9 no.2
    • /
    • pp.138-143
    • /
    • 2000
  • The establishment of a practical ultra-precision grinding technique using Diamond and CBN wheels is one of the major key technolo-gies to improve production techniques for machine-to-difficult materials without finishing process such as lapping and polishing. But the special efficient dressing technique for ultra-fine grit type grinding wheels to stabilize the grinding ability was not developed. Recently electrolytic in-process dressing technique is proposed to ultra-fine grit type metal bonded diamond wheels to protrude abra-sives continuously from the tool surface. This technology can be widely used to surface grinding and cylindrical grinding but cannot be used efficiently to internal grinding because of the electrode attachment trouble. This paper describes the effect of interval type electrolytic dressing as proposed newly to cast iron bonded diamond wheel for efficient internal grinding with mirror type high quality ground surface.

  • PDF

A study on the internal high-speed grinding (고속 내면 연소에 관한 연구)

  • An, Sang-Ook;Inasaki, Ichiro
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.10 no.2
    • /
    • pp.190-196
    • /
    • 1993
  • Internal high speed grinding under several high grinding wheel speed condition has been performed in this study for the effects have analyzed and compared with the grinding power, grinding tangential force and accuracy of surface with the carbon tool steel(SK3). The following results have been obtained: (1) Under the workpiece speed constant condition, increasing the grinding speed, the tangential force is decreased, and on the contrary, accuracy of surface is improved. (2) Under the speed ratio (V$_{w}$/V$_{s}$) contant condition it is possible to increase the high machining efficiency constraint to tangential grinding force constant.ant.

  • PDF

Estimation of the Maximum Undeformed Chip Thickness Using the Average Grain Model (평균입자 연삭모델에 의한 최대미변형칩두께의 예측)

  • Lee, Y.M.;Choi, W.S.;Son, J.H.;Bae, D.W.;Son, S.P.;Hwang, K.S.
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.2
    • /
    • pp.30-36
    • /
    • 2007
  • In order to estimate the maximum undeformed chip thickness in grinding operation, it is necessary to obtain the successive cutting point spacing. In the past it was obtained by experiments. In this paper, the average successive cutting point spacing has been obtained using the given grinding input conditions and it is possible to estimate the maximum undeformed chip thickness without using any experimentally obtained data. The validity of the proposed analysis has been verified based on two sets of grinding scratch tests using WA and CBN grinding wheels.

Machining Characteristics and Cutting Force Analysis of Hardfacing Overlay Welding in High Chromium Carbide (고크롬탄화물 하드페이싱 육성용접물의 가공특성과 절삭력 분석)

  • Kim, Min-Ho;Kim, Tae-Young
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.18 no.5
    • /
    • pp.469-476
    • /
    • 2009
  • Hard facing overlay welding in high chromium carbide is a representative way of extending the fatigue life or recompensing damage, because workpiece surface is uniformly overlay-welded by alloy material. In general, grinding process is currently used for finish due to hardness of weld material. The development of tool material, such as PCBN, has made it possible to use turning instead of grinding. There are many advantages of hard Owning, as lower equipment costs, shorter setup time, fewer process steps, higher material removal rate, better surface integrity and the elimination of cutting fluid. In this paper, machining characteristics and cutting performance are examined to investigate turning possibility of overly welding in high chromium carbide.

  • PDF

Ball Screw Cutting of Hardned Steel (고경도강의 나사선삭)

  • 황동환;박철우;김대은;이상조
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1993.10a
    • /
    • pp.37-41
    • /
    • 1993
  • ball screw is a critical machine component which dictates the precison of a given machine tool. The conventional manufacturing method requires the heat treated ball screw to be ground to its final dimensions. This study looks into the the feasibility of replacing the grinding process with a simpler process, namely threading on NC lathe. The purpose is to reduce the capital investment as well as production time in the manufacture of ball screws. Ceramics and CBN cutting tools are compared with respect to their ability to machine hardened steel. It is shown that CBN tools can be successfully utilized to machine precision ball screws with superior suface qualities.

  • PDF

Selection of Optimal Processing Conditions for Quartz Using the Taguchi Method (다구찌법을 이용한 석영의 최적 가공조건 선정에 관한 연구)

  • Jeong, Ho-In;Choi, Seong-Jun;Lee, Choon-Man
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.2
    • /
    • pp.123-129
    • /
    • 2022
  • Quartz (SiO2) has high abrasion and heat resistances and excellent chemical and mechanical properties; therefore, it is used in various industries, such as machinery, chemistry, optics, and medicine. Quartz is a high-hardness and brittle material and is classified as the topmost difficult-to-cut material, which is because of the cracking or chipping at the edge during processing. Corner wear, such as cracks and chippings that occur during cutting, is a major cause for the deterioration in the machining quality. Therefore, many researchers are investigating various techniques to process quartz effectively. However, owing to the mechanical properties of quartz, most studies have been conducted on grinding, micromachining, and microdrilling. Few studies have been conducted on quartz processing. The purpose of this study was to analyze the machining characteristics according to the machining factors during the slot machining of quartz using a cubic boron nitride (CBN) tool and to select the optimal machining conditions using the Taguchi method. The machining experiment was performed considering three process variables: the spindle speed, feed rate, and depth of cut. The cutting force and surface roughness were analyzed according to the processing conditions.

Machinability investigation and sustainability assessment in FDHT with coated ceramic tool

  • Panda, Asutosh;Das, Sudhansu Ranjan;Dhupal, Debabrata
    • Steel and Composite Structures
    • /
    • v.34 no.5
    • /
    • pp.681-698
    • /
    • 2020
  • The paper addresses contribution to the modeling and optimization of major machinability parameters (cutting force, surface roughness, and tool wear) in finish dry hard turning (FDHT) for machinability evaluation of hardened AISI grade die steel D3 with PVD-TiN coated (Al2O3-TiCN) mixed ceramic tool insert. The turning trials are performed based on Taguchi's L18 orthogonal array design of experiments for the development of regression model as well as adequate model prediction by considering tool approach angle, nose radius, cutting speed, feed rate, and depth of cut as major machining parameters. The models or correlations are developed by employing multiple regression analysis (MRA). In addition, statistical technique (response surface methodology) followed by computational approaches (genetic algorithm and particle swarm optimization) have been employed for multiple response optimization. Thereafter, the effectiveness of proposed three (RSM, GA, PSO) optimization techniques are evaluated by confirmation test and subsequently the best optimization results have been used for estimation of energy consumption which includes savings of carbon footprint towards green machining and for tool life estimation followed by cost analysis to justify the economic feasibility of PVD-TiN coated Al2O3+TiCN mixed ceramic tool in FDHT operation. Finally, estimation of energy savings, economic analysis, and sustainability assessment are performed by employing carbon footprint analysis, Gilbert approach, and Pugh matrix, respectively. Novelty aspects, the present work: (i) contributes to practical industrial application of finish hard turning for the shaft and die makers to select the optimum cutting conditions in a range of hardness of 45-60 HRC, (ii) demonstrates the replacement of expensive, time-consuming conventional cylindrical grinding process and proposes the alternative of costlier CBN tool by utilizing ceramic tool in hard turning processes considering technological, economical and ecological aspects, which are helpful and efficient from industrial point of view, (iii) provides environment friendliness, cleaner production for machining of hardened steels, (iv) helps to improve the desirable machinability characteristics, and (v) serves as a knowledge for the development of a common language for sustainable manufacturing in both research field and industrial practice.