• 제목/요약/키워드: CBN Abrasive

검색결과 18건 처리시간 0.025초

CBN 단입자의 연삭특성에 관한 연구 (A study on grinding characteristics of CBN single abrasive grain)

  • 팽현진;손명환
    • 대한기계학회논문집
    • /
    • 제14권6호
    • /
    • pp.1533-1541
    • /
    • 1990
  • 본 연구에서는 초입자인 CBN단입자와 기존의 연삭입자인 SiC단입자를 연삭입 자로 하고, 경강과 연강의 공작물재료를 단입자로 연삭했을 때의 표면거칠기 특성을 단입자의 절삭현상으로부터 비교 구명하고 CBN입자에 의한 연삭의 경우가 표면거칠기 가 악화하는 원인을 구명함으로써 이것을 토대로 하여 CBN입자의 실용 보편화의 자료 로 삼고자 하였다.

CBN 숫돌의 입자거동에 관한 연구 (A Study on the Behaviors of Abrasive Grains in CBN Wheel)

  • 김희남
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 1996년도 추계학술대회 논문
    • /
    • pp.91-95
    • /
    • 1996
  • One must observe abrasive grain of grinding wheel and know their behaviors to understand the grinding mechanism. The behaviors of abrasive grain on the wheel surface. such as shapes distributions and changes were studied to make the grinding mechanism clear but the behaviors of abrasive grains on CBN wheel are not known enough. From this paper the working surface of a grinding wheel is observed by photography in which a picture of a wheel surface is taken by the camera through the microscope on the grinding machine and analyzed with the computer.

  • PDF

Ba-Ferrite와 GC, CBN을 이용한 자기 연마재 개발 (Development of The Magnetic Abrasive Using Ba-Ferrite and GC, CBN)

  • 김희남;윤여권
    • 한국안전학회지
    • /
    • 제23권5호
    • /
    • pp.43-48
    • /
    • 2008
  • The magnetic polishing is the useful method to finish some machinery fabrications by using magnetic power. This method is one of the precision polishing techniques and has an aim for clean technology in the transportation of the pure gas in the clean pipes. The magnetic abrasive polishing method is not so common in the field of machine that it is not known to widely. There are only few researchers in this field because of non-effectiveness of magnetic abrasive. Therefore, in this paper deals with development of the magnetic abrasive using Ba-Ferrite. In this development, abrasive grain GC and CBN has been made by using the resin bond fabricated at low temperature. And magnetic abrasive powder was fabricated from the Ba-Ferrite which was crushed into 200 mesh. The XRD analysis result shows that only GC, CBN and Ba-Ferrite crystal peaks were detected, explaining that resin bond was not any more to contribute chemical reaction. From SEM analysis, we found that GC, CBN abrasive and Ba-Ferrite were strongly bonding with each other.

유리질 결합 CBN공구 제조시 기공량 변화 (The Change of Porosity During the Fabrication of Vitreous Bonded CBN Tools)

  • 양진
    • 한국세라믹학회지
    • /
    • 제35권9호
    • /
    • pp.988-994
    • /
    • 1998
  • In the manufacturing of vitreous bonded CBN tool the porosity change associated with various processing conditions, I. e. the sintering temperature and the size and the amount of abrasive grits was observed. In the case of sintering of vitreous bond material only the specimen density reached the maximum at 950$^{\circ}C$ and then the total porosity was increased slightly with the temperature above 950$^{\circ}C$. In the sintering of a-brasive grits and the vitreous bond material together a marked increase in the total porosity was found with the temperature above 950$^{\circ}C$ Reducing the grit size at the constant volume fraction of abrasive grits showed an increase in the total porosity at whole sintering temperature. On the contrary. it was observed that increasing the volume fraction of abrasive grits with a same size showed the increased open porosity simultaneously with decreased closed porosity at whole sintering temperature.

  • PDF

반구형 전착 CBN 휠에 의한 연삭가공의 연삭력 해석 (Mechanics of the Grinding by Hemispheric Type Electroplated CBN Wheel)

  • 서영일;최환;이종찬;정선환
    • 한국정밀공학회지
    • /
    • 제15권6호
    • /
    • pp.153-158
    • /
    • 1998
  • In this paper, a theoretical analysis is presented on the mechanics of the grinding by hemispheric type electroplated CBN wheel. The grinding forces acting on a single grain were calculated from its geometry by assuming the abrasive grain is spherical. Then. the total grinding forces were obtained by estimating the number of acting abrasive grains and the area of contact. The model includes the grinding variables such as wheel speed. feed speed. depth of cut, and grinding wheel positions. Experiments were also carried out to compare with the analytical results. The experimental results were found to be in good agreement with the analytical ones.

  • PDF

CBN분말상에 석출형상 제어를 위한 무전해 기능성 니켈합금도금에 관한 연구 (A Study on the Functional Electroless Ni Plating for Controled Morphology on the CBN Powder)

  • 추현식;김동규
    • 한국표면공학회지
    • /
    • 제41권6호
    • /
    • pp.312-324
    • /
    • 2008
  • In this study, the functional property as a super abrasive material was secured for CBN powder by the electroless Ni-P plating on the surface of the particle. The plating solution has been prepared to control the surface morphology by regulating surfactants and process conditions. The effects of processing parameters on the surface morphology of CBN powder was discussed. The results are summarized as follows; A stable plating tendency was achieved from 1 hour after quantitatively dropping reducing agent. It was observed that more than 50% of the weight gain was obtained by Ni-P coating on the surface of CBN super abrasive powder. The morphology of the Ni-P coating layer is consisted of botryoidal and spiky type and it could be controlled by regulating processing parameters. Superior characteristic in terms of surface morphology was found in the nonionic surfactant XL-80N. It was found that XL-80N considerably decreased surface tension of CBN powder and Ni-P alloy surface then enhance wettability as well as plating rate. Metal coated CBN powder as a raw material of resin bond wheel has been developed through this investigation.

CBN 볼엔드밀의 마모메카니즘에 관한 연구 (A Study on Wear Mechanism of CBN Ball Endmills)

  • Park, S.W.;Lee, K.W.;Lee, J.C.
    • 한국정밀공학회지
    • /
    • 제14권12호
    • /
    • pp.121-126
    • /
    • 1997
  • The use of CBN tool material has been greatly increased because of the superior metal cutting performance for the machining of hardened steel. This paper presents some experimental results on the ball endmiling of harened steels. Three different hardnesses of STD11 workpieces were machined using CBN ball endimills, and the machining characteristics including cutting forces tool wear, and surface roughness of machined surface were compared. It has been found that the CBN ball endmill works better in the machining of harder workpieces. The microscopic examination explains that this unusual phenomenon is caused by the difference of microstructure of each workpieces.

  • PDF

STB-11 경도변화에 따른 CBN볼 엔드밀의 절삭특성 (Cutting Characteristics of CBN Ball Endmills for STD-11 of Various Hardnesses)

  • 최상우;이기우;이세균;이종찬
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 춘계학술대회 논문집
    • /
    • pp.1078-1082
    • /
    • 1997
  • The use of CBN tool material has been greatil increased because of the superior metal cutting performance for the machining of hardened steels. This paper presents some experimental results on the ball endmilling of hardened steels. Three different hardnesses of STB-11 workpieces were machined using CBN ball endmills, and the machining charteristics including cutting forces, tool wear, and surface roughness of machined surface were compared. It has been found that the CBN ball endmill works better in the machining of harder workpieces. The microscopic examination explains that this unusual phenomenon is cause by the difference of microstructure of each workpieces.

  • PDF

고경도강(AISI 4140, HrC60)의 하드터닝에서 가공속도 및 윤활조건 변경에 따른 CBN 공구의 마모 특성 (Wear Characteristics of CBN Tools on Hard Turning of AISI 4140)

  • 양기동;박경희;이명규;이동윤
    • 한국정밀공학회지
    • /
    • 제31권9호
    • /
    • pp.799-804
    • /
    • 2014
  • Hard turning is a machining process for hardened materials with high surface quality so that grinding process can be eliminated. Therefore, the hard turning is capable of reducing machining time and improving productivity. In this study, hardened AISI4140 (high-carbon chromium steel) that has excellent yield strength, toughness and wear resistance was finish turned using CBN tools. Wear characteristics of CBN tool was analyzed in dry and MQL mixed with nano-particle (Nano-MQL). The dominant fracture mechanism of CBN tool is diffusion and dissolution wear on the rake surface resulting in thinner cutting edge. Abrasive wear by hard inclusion in AISI4140 was dominant on the flank surface. Nano-MQL reduced tool wear comparing with the dry machining but chip evacuation should be considered. A cryogenically treated tool showed promising result in tool wear.

입방정질화붕소입자 전착지석에 의한 전해디버링 시스템 (Electrochemical Deburring System by the Electroplated CBN Wheel)

  • 최인규;김정두
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1996년도 춘계학술대회 논문집
    • /
    • pp.19-23
    • /
    • 1996
  • Deburring and edge finishing technology as the last process of machining operation is required for manufacturing of advanced procesion components, duburring has treated as a difficult problem on going tothe highefficency, automation in the FMS. Removal of butt with various shapes, dimensions and properties coultn't has a standard and has depended on manual treatment. Especially, deburring for cross hole inside owing to passing through out perpendicular to a main hole is more difficult, the electrolytic method is proper as its solution at practical aspects. Therefore, for the high effciency and automation of intermal deburring in the cross hole, development of electrolytic debutting technology is needed. So, the new process in the burr treatment is supposed. In this study, in the eliminating burr inside cross hole, the principle and machining performances of electrochemical deburring by Cubic-Boron-Nitrade abrasive electroplate wheel are investigated, Design and manufacture of CBN electroplated wheel and analysis of characteristics with electrolytic debutting are achieved. Also deburring efficiency and electrolytic performance for cross hole were examined according to electrolytic current and electrolytic deburring condition corresponding to acquired edge quality was found out.

  • PDF