• Title/Summary/Keyword: CBAD : Ceiling based air distribution system

Search Result 2, Processing Time 0.017 seconds

An Energy Performance Evaluation of UFAD System under the Various Conditions of Thermal Load (실내 부하조건에 따른 바닥공조 시스템의 에너지 성능 평가)

  • Yoon, Seong-Hoon;Jang, Hyang-In;Kim, Kyung-Ah;Yu, Ki-Hyung;Suh, Seung-Jik
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.1
    • /
    • pp.14-19
    • /
    • 2013
  • The present study has been conducted for evaluating and comparing the performance of the underfloor air distribution system(UFAD) and the ceiling based air distribution system(CBAD) under cooling condition. Simulations and experiments were carried out for verifying the model by TRNSYS program about UFAD and CBAD. The results of simulation for various conditions of thermal load are summarized as followings. UFAD had an advantage for making thermal comfort because of lower temperature of the floor surface. Moreover, UFAD showed lower fan power about 30~50% than CBAD under the same conditions of thermal load. The energy saving rates of UFAD were increased to 17.7% in proportion to the thermal load on unoccupied zone(lighting). Ultimately, additional investigations should be done for analyzing optimized operating conditions of UFAD with considering the thermal performance of building envelop and the thermal load.

A Study on Energy Saving Performance by Night Purge Cooling with Pressurized Under Floor Air Distribution System (가압식 바닥공조 시스템과 야간 외기냉방의 병용에 따른 에너지저감 성능에 관한 연구)

  • Yoon, Seong-Hoon
    • Journal of the Korean Solar Energy Society
    • /
    • v.40 no.1
    • /
    • pp.25-33
    • /
    • 2020
  • It has been reported about the energy saving performance of UFAD(under floor air distribution) system and NPC(night purge cooling) system respectively which are applied for commercial buildings. However, when two systems are used at the same time, the effect of heat transfer from floor plenum to slab may vary depending on the operating conditions of NPC. In this study, cooling energy demands were analyzed for building models with UFAD and NPC by using TRNSYS 17 program. UFAD was applied as a cooling system of the base building model, and the cooling energy demands were compared for 64 cases in which the operating time, supply airflow rate, and outdoor air temperature(To) of NPC. As a result, it was confirmed that the cooling energy demands were reduced to 30 ~ 80% level compared to UFAD alone, and in particular, the energy demand was reduced in proportion to the supply airflow rate or the operating time while To was 16 ~ 20℃. However, when To was 22℃, the increase in the supply airflow rate or the operating time results in a disadvantage in terms of cooling energy demands. In addition, the cooling energy demands for UFAD+NPC model were analyzed by applying weather data from three regions with different average outdoor air temperatures. As a result, the cooling energy demand of operating NPC only when To was below 20℃ was reduced by 27% compared to that of operating NPC continuously for 8 hours.